Parallelism

CS6787 Lecture 7 — Spring 2024

So far

We've been talking about algorithms

We've been talking about ways to optimize their parameters

- But we haven't talked about the underlying hardware
 - How does the properties of the hardware affect our performance?
 - How should we implement our algorithms to best utilize our resources?

What does modern ML hardware look like?

- Lots of different types
 - CPUs
 - GPUs
 - FPGAs
 - Specialized accelerators

 Common thread: all of these architectures are highly parallel

Parallelism: A History

- The good old days: if I want my program to run faster, I can just wait
 - Moore's law —transistors on a chip doubles every 18 months
 - Dennard scaling transistors shrink, power density stays constant
- This "free lunch" drove a wave of innovation in computing
 - Applications with bigger data were constantly becoming feasible
 - Drove a couple of AI boom-bust cycles
- But also drove a lack of concern for systems efficiency
 - Why work on making efficient systems when I can just wait instead?

Moore's Law: A Graphic

The End of the Free Lunch

- In 2005, Herb Sutter declares "The Free Lunch Is Over" and that there will be "A Fundamental Turn Toward Concurrency in Software"
 - He's not the only one that was saying this.
- You can see this on the previous figure as trends start to flatten out.
- Why? Power
 - Dennard scaling started breaking down
 - Too much heat at high clock frequencies chip will melt

The Solution: Parallelism

I can re-write my program in parallel

- Moore's law is still in effect
 - Transistor density still increasing exponentially
- Use the transistors to add parallel units to the chip
 - Increases throughput, but not speed

The Effect of Parallelism

Pros:

- Can continue to get speedups from added transistors
- Can even get speedups beyond a single chip or a single machine

Cons:

- Can't just sit and wait for things to get faster
- Need to work to get performance improvements
- Need to develop new frameworks and methods to parallelize automatically

What benefits can we expect

 If we run in parallel on N copies of our compute unit, naively we would expect our program to run N times faster

Does this always happen in practice?

• No! Why?

Amdahl's Law

 Gives the theoretical speedup of a program when it's parallelized

$$S_{ ext{latency}}(s) = rac{1}{(1-p) + rac{p}{s}}$$

- S_{latency} is total speedup
- **p** is the parallelizable portion of the algorithm
- s is the number of parallel workers/amount of parallelism

Amdahl's Law (continued)

Consequences of Amdahl's Law

Diminishing marginal returns as we increase the parallelism

 Can never actually achieve a linear or super-linear speedup as the amount of parallel workers increases

Is this always true in practice?

No! Sometimes we do get super-linear speedup.
 When?

What does modern parallel hardware look like?

CPUs

- Many parallel cores
- Deep parallel cache hierarchies taking up most of the area
- Often many parallel CPU sockets in a machine

GPUs

- Can run way more numerical computations in parallel than a CPU
- Loads of lightweight cores running together
- In general: can run many heterogeneous machines in parallel in a **cluster**

Sources of parallelism

From most fine-grained to most course-grained

On CPUs: Instruction-Level Parallelism

 How many instructions in the instruction stream can be executed simultaneously?

For example:

•
$$S = C + Z$$

The first two instructions here can be executed in parallel

 Important for pipelining, and used fully in superscalar processors.

On CPUs: SIMD/Vector Parallelism

- Single-Instruction Multiple-Data
 - Perform the same operation on multiple data points in parallel
- Uses registers that store and process vectors of multiple data points
 - Latest standards use 512-bit registers, which can hold 16 floating point numbers
- A long series of instruction set extensions for this on CPUs
 - SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, ...
- Critical for dense linear algebra operations common in ML

On CPUs: Multicore Parallelism

- Modern CPUs come with multiple identical cores on the same die
- Cores can work independently on independent parallel tasks
 - Unlike ILP and SIMD
- Cores communicate through shared memory abstraction
 - They can read and write the same memory space
 - This is done through a sophisticated cache hierarchy
- Significant cost to synchronize multiple CPUs working together

On CPUs: Hyperthreading

Similar to multi-core

 Multiple threads running on the same core at the same time and sharing resources

- Slower than multi-core with the same thread count
 - Because resources are shared

• Usually don't have to worry about it

On CPUs: Multi-socket parallelism

- Modern motherboards have multiple sockets for CPUs
- Cores on these CPUs still communicate through shared memory
- But latency/throughput to access memory that is "closer" to another CPU chip is worse than accessing your own memory
- This is called **non-uniform memory access** (NUMA)

DEMO

On GPUs: Stream Processing

- Given a stream of data, apply a series of operations to the data
 - Operations are called kernel functions
- This type of compute pattern is well-suited to GPU computation
 - Because compared with CPUs, GPUs have much more of their area devoted to arithmetic but much less devoted to memory and caches
- There's additional parallel structure within a GPU
 - For example, in CUDA threads running the same program are organized into warps and run at the same time

CUDA Parallelism Model

- "Kernel" a program element running on the GPU
- "Warp" a group of 32 threads that run together
 - Share an instruction stream mostly
- "Block" a group of up to 1024 threads that can interact with each other via shared memory & synchronize
 - All threads in a block run on a single Streaming Multiprocessor (SM)
- "Grid" multiple blocks running on the GPU
 - Partitioned across all the SMs

GPU Tensor Cores

- Special hardware that computes a small fixed-size matrix-matrix multiply
 - e.g. 16x16, 8x32, 32x8

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

- A single tensor core matmul is a collaborative operation of all the threads in a warp
 - Or else runs asynchronously from the CUDA cores

On specialized accelerators and ASICs

Whatever you want!

- The parallelism opportunities are limited only by the available transistors
- We will see many new accelerators for ML with different parallel structures and resources
 - Some will look like FPGAs: e.g. CGRAs
 - Some will just speed up one particular operation, such as matrix-matrix multiply

The Distributed Setting

- Many workers communicate over a network
 - Possibly heterogeneous workers including CPUs, GPUs, and ASICs
- Usually no shared memory abstraction
 - Workers communicate explicitly through passing messages
- Latency much higher than all other types of parallelism
 - Often need fundamentally different algorithms to handle this

How to use parallelism in machine learning

From most fine-grained to most course-grained

Recall

• Stochastic gradient descent

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t})$$

• Can write this as an algorithm:

• For **t = 1 to T**

- Choose a training example at random
- Compute the gradient and update the model
- Repeat.

How to run SGD in parallel?

• There are several places where we can extract parallelism from SGD.

- We can use any or all of these places
 - Often we use different ones to correspond to the different sources of parallelism we have in the hardware we are using.

Parallelism within the Gradient Computation

Try to compute the gradient samples themselves in parallel

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t})$$

- Problems:
 - We run this so many times, we will need to synchronize a lot
- Typical place to use: instruction level parallelism, SIMD parallelism
 - And distributed parallelism when using model/pipeline parallelism

Parallelism with Minibatching

Try to parallelize across the minibatch sum

$$x_{t+1} = x_t - \frac{\alpha}{B} \sum_{b=1}^{B} \nabla f\left(x_t; y_{\tilde{i}_b}\right)$$

- Problems:
 - Still run this so many times, we will need to synchronize a lot
 - Can have a tradeoff with statistical efficiency, since too much minibatching can harm convergence
- Typical place to use: all types of parallelism

Parallelism across iterations

- Try to compute multiple iterations of SGD in parallel
 - Parallelize the outer loop usually a good idea

$$\begin{vmatrix} x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \end{vmatrix}$$

- Problems:
 - Naively, the outer loop is sequential, so we can't do this without fine-grained locking and frequent synchronization
- Typical place to use: multi-core/multi-socket/cluster parallelism

Parallelism for hyperparameter optimization

 Just run multiple copies of the whole algorithm independently, and use them to do hyperparameter optimization

- Problems:
 - Can't do this if you don't want to do hyperparameter optimization
 - Isn't actually useful once you've already set your parameters
- Typical place to use: distributed computation

Parallelism for ensembling

 Just like before, run multiple copies of the whole algorithm independently, and use them to produce an ensemble classifier

- Problems:
 - Can't do this if you don't want to train an ensemble classifier
 - Now the difficulty for learning
- Typical place to use: distributed computation

What about our other methods?

- We can speed up all our methods with parallel computing
 - Minibatching has a close connection with parallelism
 - SVRG
 - Momentum
- And any SGD-like algorithm lets us use the same ways to extract parallelism from it
 - Things like gradient descent, stochastic coordinate descent, stochastic gradient Langevin dynamics, and many others.

Asynchronous Parallelism

Limits on parallel performance

- Synchronization
 - Have to synchronize to keep the workers aware of each other's updates to the model — otherwise can introduce errors
- Synchronization can be very expensive
 - Have to stop all the workers and wait for the slowest one
 - Have to wait for several round-trip times through a highlatency channel
- Is there something we can do about this?

Idea: Just Don't Synchronize

Not synchronizing adds errors due to race conditions

 But our methods were already noisy — maybe these errors are fine

 If we don't synchronize, get almost perfect parallel speedup

Fast Parallel SGD: HOGWILD!

Multiple parallel workers

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

111 · Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

- Pick a training example y_{i+} uniformly at random
- Update the model x_t using a gradient estimate

• Pick a training example y_{i_t} uniformly at random

• Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

 $x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$

• Iterate

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate
 - $x_{t+1} = x_t \alpha \nabla f(x_t; y_{i_t})$
- Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

Iterate

- Pick a training example y_{i+} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

m · Iterate

Asynchronous parallel updates (no locks) to a single shared model

Distributed Learning

CS6787 Lecture 7/8 — Fall 2024

Main idea: use multiple machines to do learning.

Why distribute?

- Train more quickly
- Train models too large to fit on one machine
- Train when the data are inherently distributed

Distributed computing basics

- Distributed parallel computing involves two or more machines collaborating on a single task by communicating over a network.
 - Distributed computing requires explicit (i.e. written in software) communication among the workers.
 - No shared memory abstraction! (Unlike parallelism on 1 machine)
- There are a few basic patterns of communication that are used by distributed programs.

Basic patterns of distributed communication

Push: Machine A sends some data to machine B.

Pull: Machine B requests some data from machine A.

Broadcast: Machine A sends data to many

Reduce: Compute some reduction of data on multiple machines and materialize result on B.

Basic patterns of distributed communication (cont'd)

All-reduce: Compute some reduction of data on multiple machines and materialize result on all those machines.

All these operations can be synchronous or asynchronous.

Wait: Pause until another machine says to continue.

Barrier: Wait for all workers to reach some

Overlapping computation and communication

- Communicating over the network can have high latency
 - we want to hide this latency
- An important principle of distributed computing is overlapping computation and communication
- For the best performance, we want our workers to still be doing useful work while communication is going on
 - rather than having to stop and wait for the communication to finish
 - sometimes called a stall
 - asynchronous communication can help a lot here

Running SGD with All-reduce

- All-reduce gives us a simple way of running learning algorithms such as SGD in a distributed fashion.
- Simply put, the idea is to just parallelize the minibatch. We start with an identical copy of the parameter on each worker.

• Recall that SGD update step looks like:
$$w_{t+1} = w_t - \alpha_t \cdot \frac{1}{B} \sum_{b=1}^{L} \nabla f_{i_{b,t}}(w_t),$$

Running SGD with All-reduce (continued)

• If there are M worker machines such that $B = M \cdot B'$, then

$$w_{t+1} = w_t - \alpha_t \cdot \frac{1}{M} \sum_{m=1}^{M} \frac{1}{B'} \sum_{b=1}^{B'} \nabla f_{i_{m,b,t}}(w_t).$$

- Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when m = 2 to worker 2, et cetera.
- After all the gradients are computed, we can perform the outer sum with an **all-reduce operation**.

Running SGD with All-reduce (continued)

- After this all-reduce, the whole sum (which is essentially the minibatch gradient) will be present on all the machines
 - so each machine can now update its copy of the parameters
- Since sum is same on all machines, the parameters will update in lockstep

Statistically equivalent to sequential SGD!

```
Algorithm 1 Distributed SGD with All-Reduce
  input: loss function examples f_1, f_2, \ldots, number of machines M, per-machine minibatch size B'
  input: learning rate schedule \alpha_t, initial parameters w_0, number of iterations T
  for m = 1 to M run in parallel on machine m
      load w_0 from algorithm inputs
      for t = 1 to T do
          select a minibatch i_{m,1,t}, i_{m,2,t}, \dots, i_{m,B',t} of size B'
          compute g_{m,t} \leftarrow \frac{1}{B'} \sum_{i=1}^{B'} \nabla f_{i_{m,b,t}}(w_{t-1})
          all-reduce across all workers to compute G_t = \sum g_{m,t}
                                                                  m=1
          update model w_t \leftarrow w_{t-1} - \frac{\alpha_t}{M} \cdot G_t
      end for
  end parallel for
  return w_T (from any machine)
```

Same approach can be used for momentum, Adam, etc.

Benefits of distributed SGD with All-reduce

- The algorithm is easy to reason about, since it's statistically equivalent to minibatch SGD.
 - And we can use the same hyperparameters for the most part.

- The algorithm is easy to implement
 - since all the worker machines have the same role and it runs on top of standard distributed computing primitives.

Drawbacks of distributed SGD with all-reduce

- We're not overlapping computation and communication.
 - While the communication for the all-reduce is happening, the workers are idle.
- The effective minibatch size is growing with the number of machines
 - If we don't want to run with a large minibatch size for statistical reasons, this can prevent us from scaling to large numbers of machines using this method.
- Potentially requires lots of network bandwidth to communicate to all workers.

Where do we get the training examples from?

There are two general options for distributed learning.

Training data servers

- Have one or more non-worker servers dedicated to storing the training examples (e.g. a distributed in-memory filesystem)
- The worker machines load training examples from those servers.

Partitioned dataset

 Partition the training examples among the workers themselves and store them locally in memory on the workers.

The Parameter Server Model

The Basic Idea

- Recall from the early lectures in this course that a lot of our theory talked about the convergence of optimization algorithms.
 - This convergence was measured by some function over the parameters at time t (e.g. the objective function or the norm of its gradient) that is decreasing with t, which shows that the algorithm is making progress.
- For this to even make sense, though, we need to be able to talk about the value of the parameters at time t as the algorithm runs.
 - E.g. in SGD, we had $w_{t+1} = w_t lpha_t
 abla f_{i_t}(w_t)$

Parameter Server Basics Continued

- For a program runni parameters at time t memory hierarchy (k
- But in a distributed s communication mu
 - Each machine will us parameters live at ar updates less recently something more complicated

For SGD with all-reduce, we can answer this question easily, since the value of the parameters is the same on all workers (it's guaranteed to be the same by the all-reduce operation). We just appoint this identical shared value to be the value of the parameters at any given time.

educe.

 This raises the question: when reasoning about a distributed algorithm, what we should consider to be the value of the parameters a given time?

The Parameter Server Model

- The parameter server model answers this question differently by appointing a single machine, the **parameter server**, the explicit responsibility of maintaining the current value of the parameters.
 - The most up-to-date gold-standard parameters are the ones stored in memory on the parameter server.
- The parameter server updates its parameters by using gradients that are computed by the other machines, known as **workers**, and pushed to the parameter server.
- Periodically, the parameter server **broadcasts its updated parameters** to all the other worker machines, so that they can use the updated parameters to compute gradients.

Parameter server model: visually

A common model for distributed ML

- workers send gradients to parameter server
- parameter server sends parameters back to workers

Learning with the parameter server

Two options when learning with a parameter server

Synchronous distributed training

- Similar to all-reduce, but with gradients summed on a central parameter server
- Still equivalent to sequential minibatch SGD

Asynchronous distributed training

- Compute and send gradients and add them to the model as soon as possible
- Broadcast updates whenever they are available

Parameter server summary

- The parameter server holds the central copy of the weights
- Each worker **computes gradients** on minibatches the data
 - Then sends those gradients back to the parameter server
- Periodically, the worker pulls an updated copy of the weights from the parameter server.
- All this can be done asynchronously.

Multiple parameter servers

- If the parameters are too numerous for a single parameter server to handle, we can use **multiple parameter server machines**.
- We partition the parameters among the multiple parameter servers
 - Each server is only responsible for maintaining the parameters in its partition.
 - When a worker wants to send a gradient, it will partition that gradient vector and send each chunk to the corresponding parameter server; later, it will receive the corresponding chunk of the updated model from that parameter server machine.
- This lets us scale up to very large models!

Other Ways To Distribute

The methods we discussed so far distributed across the minibatch (for all-reduce SGD) and across iterations of SGD (for asynchronous parameter-server SGD).

But there are other ways to distribute that are used in practice too.

Decentralized learning

"Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent." NeurIPS 2017

- Idea: learn without any central coordination
 - No parameter server; each worker has its own copy of the model
- Workers update by doing the following:
 - Run an SGD update step using an example stored on that worker,
 - Average the worker's current model with the models of some other workers, usually its neighbors in some sparse graph
 - This limits total communication
- This is sometimes called a gossip algorithm

Optimal Complexity in Decentralized Training. Yucheng La Christopher De Sa. In *ICML: the Thirty-eighth International Conference on Machine Learning*, July 2021.

Decentralization cont'd

• Roughly three senses in which an algorithm can be "decentralized"

- Application layer: Decentralized data
 - Distributions of data different on different workers
- Protocol layer: Gossip protocol
- Network layer: Communication through sparsely connected graph topology

Local SGD

- Many parallel workers update their own copy of the model by running SGD steps using their own local data
- Periodically the workers all average by taking an allreduce
 - Like all-reduce SGD, but the all-reduce happens less frequently than at every SGD iteration
- Can generalize better than large-batch SGD
 - "Don't use large mini-batches, use local SGD." ICLR 2020

So far: Data Parallelism

- The methods we've discussed are parallelizing over examples
 - Each worker is running the same computation to compute gradients, just on different examples.

This is an instance of data parallelism

But data parallelism is not the only option...

Model Parallelism

- Main idea: **partition the layers** of a neural network among different worker machines.
- This makes each worker responsible for a subset of the parameters.
- Forward and backward signals running through the neural network during backpropagation now also run across the computer network between the different parallel machines.
 - Particularly useful if the parameters won't fit in memory on a single machine.
 - This is very important when we move to specialized machine learning accelerator hardware, where we're running on chips that typically have limited memory and communication bandwidth.

Pipeline Parallelism

- Distribute a DNN over multiple workers by assigning each layer to its own worker.
 - Each worker manages and updates the parameters for its own layer.
 - Use microbatching to avoid stalls
- Advantage: workers no longer need to store the entire model
 - Can often keep parameters in memory

From "GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism"

Fully Sharded Data Parallel

- Distribute a DNN over workers by assigning a portion of each layer to each worker.
 - Each worker manages and updates the parameters for its own "shard"
 - Use all-gather to manifest whole weight matrix on all workers when it is time to run forward/backward
 - Still parallelize over data!
- Advantage: workers no longer need to store the entire model

Standard data parallel training

Fully sharded data parallel training

Federated learning

- Sometimes, your data is inherently distributed
 - For example, data gathered on people's mobile phones
 - For example, data measured by internet-of-things devices
- Rather than centralizing the data, may want to learn on the distributed devices themselves
 - E.g. to preserve the privacy of users
- This is called federated learning
 - Lots of interest from industry right now

Distributed computing for hyperparameter optimization

This is something we've already talked about.

- Many commonly used hyperparameter optimization algorithms, such as grid search and random search, are very simple to distribute.
 - They can easily be run on many parallel workers to get results faster.

