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Review — We’ve covered many methods

• Stochastic gradient descent
• Step size/learning rate, how long to run

• Mini-batching
• Batch size

• Momentum
• Momentum parameter

• Kernel trick/feature extraction
• How many features to extract

• Variance reduction
• Step size, epoch length

How do we 
set these 

parameters?



So Far: Theory

• Theoretical analysis of convex problems gives us a recipe for 
assigning hyperparameters
• Also gives guarantees that the algorithm will converge with some 

optimal rate

• Often based on strong-convexity/Lipschitz constants μ, L, 
etc.
• Parameters that we can bound analytically, regardless of the data

• This is usually enough to get an asymptotically optimal rate
• Certainly in the worst case



The Worst-Case Perspective

• Essentially, the theory I showed you is doing

• We’re not using the training data at all to set the 
parameters
• Or if we are, we’re only using it to compute constants like μ and L

• Question: can we use the data to improve our choice of 
parameters over what the theory gives us?

arg min
parameters

max
data

(objective)



Demo



What happened?

• Theory only minimizes an upper bound on the objective.

• But actual algorithm can do much better than the bound.
• As we saw in the demo.

• Problem: in the demo, to find the best parameter setting, we 
had to first solve the problem exactly, then run the algorithm 
many times.
• Computationally intractable in practice!

• Can we use a cheaper heuristic to set the parameters?



Hyperparameter Optimization



Hyperparameter Optimization

• Also called metaparameter optimization

• Also called tuning

• Any system that chooses hyperparameters 
automatically

• What’s the difference between the model parameters 
and the hyperparameters?



Many Settings; Many Strategies

• In some settings, just care about the model accuracy
• Just want to set things like the learning rate

• In other settings, also want to make the hardware fast
• Want to choose what hardware to run on, how many cores, 

etc.

• In all settings, there’s many ways to do 
hyperparameter optimization



Simplest Strategy:
The Null Hyperparameter Optimizer
• Simplest thing to do is to just set the parameters 

based on folklore.

• Minibatch size: b = 32

• Momentum: β = 0.9

• SVRG: epoch length =    5   x Training Set Size

?

?

?



The Effect of Using Folklore
• Folklore can lead you astray!

• Can actually find simple cases where the folklore settings are 
wrong.

• This is a good way to start a research paper.

• …but folklore is folklore for a reason!
• It exists where people have found empirically that they get good 

results.
• So when you try something new, the first thing to compare to is 

folklore.

• To be honest, the results you get from just using the folklore 
settings are really not that bad for a lot of practical purposes.



From the simplest strategy to…
The Most Complicated Strategy

• Spend twenty-five years training a Strong AI on custom 
hardware, then have it set your hyperparameters.

• …more explicitly, just get a human to set your 
hyperparameters.

• Fortunately, we happen to have a lot of humans
• But human effort, particularly expert human effort, doesn’t scale.



Tuning By Hand

• Just fiddle with the parameters until you get the results you 
want

• Probably the most common type of hyperparameter 
optimization

• Upsides: the results are generally pretty good…

• Downsides: lots of effort, and no theoretical guarantees
• Although there’s nothing fundamental that prevents us from having 

theory here



Demo



Grid Search

• Define some grid of parameters you want to try

• Try all the parameter values in the grid
• By running the whole system for each setting of parameters

• Then choose the setting with the best result

• Essentially a brute force method



Downsides of Grid Search

• As the number of parameters increases, the cost of grid 
search increases exponentially!
• Why?

• Still need some way to choose the grid properly
• Something this can be as hard as the original hyperparameter 

optimization

• Can’t take advantage of any insight you have about the 
system!



Making Grid Search Fast

• Early stopping to the rescue
• Can run all the grid points for one epoch, then discard the half 

that performed worse, then run for another epoch, discard half, 
and continue.

• Can take advantage of parallelism
• Run all the different parameter settings independently on 

different servers in a cluster.
• An embarrassingly parallel task.
• Downside: doesn’t reduce the energy cost.



One Variant: Random Search

• This is just grid search, but with randomly chosen points 
instead of points on a grid.

• This solves the curse of dimensionality
• Don’t need to increase the number of grid points exponentially 

as the number of dimensions increases.

• Problem: with random search, not necessarily going to 
get anywhere near the optimal parameters in a finite 
sample.



One Variant: “Best Ball”

• Works with epochs.

• At each epoch, do a small grid search around the 
current hyperparameter settings

• Then evaluate the objective and choose the “best ball” 
• The choice of parameters that gave the best objective for that 

epoch

• And repeat until a solution of desired quality is achieved.



An Alternative: Bayesian Optimization

• Statistical approach for minimizing noisy black-box 
functions.

• Idea: learn a statistical model of the function from 
hyperparameter values to the loss function
• Then choose parameters to minimize the loss under this model

• Main benefit: choose the hyperparameters to test not at 
random, but in a way that gives the most information about 
the model
• This lets it learn faster than grid search



Effect of Bayesian Optimization

• Downside: it’s a pretty heavyweight method
• The updates are not as simple-to-implement as grid search

• Upside: empirically it has been demonstrated to get 
better results in fewer experiments
• Compared with grid search and random search

• Pretty widely used method
• Lots of research opportunities here.



A related method: DFO

• Derivative-free optimization

• Also called zeroth-order optimization

• These methods optimize a function using only 
evaluations, no derivatives

• Ideal for use with hyperparameter optimization
• Also ideal for reinforcement learning



The opposite of DFO
Gradient-based optimization
• These strategies say: “I’m doing SGD to learn, I may as 

well use it to optimize my hyperparameters.”

• When we can efficiently differentiate with respect to the 
hyperparameters, this strategy actually works pretty 
well.

• But generally, we can’t do it.



Methods that Look at the Data

• Many methods look at curvature/variance info to decide 
how to set hyperparameters, and update their settings 
throughout the algorithm

• Example: ADAGRAD

• Example: Adam
• Which you will be reading in a few weeks.



Evaluating the Hyperparameter 
Optimization



How to evaluate the hyperparameters?

• Unlike the model parameters, we’re not given a loss 
function

• Can’t we just use the training loss?

• Not always: we don’t want to overfit the 
hyperparameters
• Especially not when they are things that affect the model



Cross-Validation

• Partition part of the available data to create an 
validation dataset that we don’t use for training.

• Then use that set to evaluate the hyperparameters.

• Typically, multiple rounds of cross-validation are 
performed using different partitions
• Can get a very good sense of how good the hyperparameters 

are
• But at a significant computational cost!



Evaluating the System Cost

• In practice we don’t just care about the statistics
• Not just about the accuracy after a fixed number of iterations

• We care about wall-clock time, and we care about energy
• How much did solving this problem actually cost?

• The parameters we chose can affect these systems 
properties
• As we saw with our SVRG demo!

• Need to include systems cost as part of the metric!



Hardware efficiency

• How long does an iteration take, on average?

• Hardware efficiency measures the systems cost of doing a 
single update.

• Key point: many hyperparameters do not affect hardware 
efficiency
• Which ones?

• Which hyperparameters do affect hardware efficiency?



Statistical Efficiency

• How many iterations do we need to get to a specified 
level of accuracy?

• Statistical efficiency measures how many updates we 
need to get an answer of the quality that we want.

• Which hyperparameters affect statistical efficiency?
• And which ones don’t?



Total performance

• Total cost of running the algorithm is:

HARDWARE EFFICIENCY x STATISTICAL EFFICIENCY

• We can estimate these quantities separately, then use 
their product to evaluate our hyperparameters.

• For example, we can use theory to evaluate statistical 
efficiency and a hardware model to evaluate hardware 
efficiency.



Benefits of Looking at Both

• Looking at both statistical and hardware efficiency 
together has some important benefits!

• Many times the optimal parameter settings are 
different than if you set the parameters to optimize 
hardware efficiency or statistical efficiency individually.

• There’s a lot of open research opportunities here!



Questions?

•Upcoming things
• Paper review 3a or 3b due on Monday
• Paper Presentation #4 on Monday


