Hyperparameter optimization

CS6787 Lecture 6 — Spring 2024



Hyperparameter optimization

CS6787 Lecture o — Fall 2024



Review — We’ve covered many methods

» Stochastic gradient descent
- Step size/learning rate, how long to run

* Mini-batching
- Batch size HOW dO we
» Momentum set these

- Momentum parameter pa ra mete rS?

« Kernel trick/feature extraction
- How many features to extract

* Variance reduction
- Step size, epoch length



So Far: Theory

« Theoretical analysis of convex problems gives us a recipe for
assigning hyperparameters

« Also gives guarantees that the algorithm will converge with some
optimal rate

» Often based on strong-convexity/Lipschitz constants p, L,
etc.
« Parameters that we can bound analytically, regardless of the data

« This is usually enough to get an asymptotically optimal rate
« Certainly in the worst case



The Worst-Case Perspective

« Essentially, the theory | showed you is doing

arg min max (objective)
parameters data

« We're not using the training data at all to set the
parameters

« Or if we are, we're only using it to compute constants like g and L

« Question: can we use the data to improve our choice of
parameters over what the theory gives us?



Demo



What happened?

« Theory only minimizes an upper bound on the objective.

« But actual algorithm can do much better than the bound.
« As we saw in the demo.

* Problem: in the demo, to find the best parameter setting, we

had to first solve the problem exactly, then run the algorithm
many times.

« Computationally intractable in practice!

« Can we use a cheaper heuristic to set the parameters?



Hyperparameter Optimization



Hyperparameter Optimization

« Also called metaparameter optimization

« Also called tuning

* Any system that chooses hyperparameters
automatically

« What's the difference between the model parameters
and the hyperparameters?



Many Settings; Many Strategies

* I[N some settings, just care about the model accuracy
« Just want to set things like the learning rate

* [N other settings, also want to make the hardware fast

* Want to choose what hardware to run on, how many cores,
etc.

* In all settings, there's many ways to do
hyperparameter optimization



Simplest Strategy:
The Null Hyperparameter Optimizer

« Simplest thing to do is to just set the parameters
based on folklore.

- Minibatch size: b = | ?

- Momentum: 3 = ? |

* SVRG: epoch length = | ? x Training Set Size




The Eftect of Using Folklore

* Folklore can lead you astray!

« Can actually find simple cases where the folklore settings are
wrong.

* This is a good way to start a research paper.

e ..but folklore is folklore for a reason!

o |t exiﬁ,ts where people have found empirically that they get good
results.

« So when you try something new, the first thing to compare to is
folklore.

« To be honest, the results you get from just using the folklore
settings are really not that bad for a lot of practical purposes.



From the simplest strategy to...
The Most Complicated Strategy

« Spend twenty-five years training a Strong Al on custom
hardware, then have it set your hyperparameters.

e ..Mmore explicitly, just get a human to set your
hyperparameters.

» Fortunately, we happen to have a lot of humans
 But human effort, particularly expert human effort, doesn'’t scale.



Tuning By Hand

 Just fiddle with the parameters until you get the results you
want

* Probably the most common type of hyperparameter
optimization

« Upsides: the results are generally pretty good...

 Downsides: lots of effort, and no theoretical guarantees

« Although there's nothing fundamental that prevents us from having
theory here



Demo



Grid Search

» Define some grid of parameters you want to try

* Try all the parameter values in the grid
« By running the whole system for each setting of parameters

 Then choose the setting with the best result

» Essentially a brute force method



Downsides of Grid Search

* As the number of parameters increases, the cost of grid
search increases exponentially!
- Why?

 Still need some way to choose the grid properly

« Something this can be as hard as the original hyperparameter
optimization

« Can't take advantage of any insight you have about the
system!



Making Grid Search Fast

« Early stopping to the rescue

« Can run all the grid points for one epoch, then discard the half
that performed worse, then run for another epoch, discard half,
and continue.

« Can take advantage of parallelism

 Run all the different parameter settings independently on
different servers in a cluster.

« An embarrassingly parallel task.
 Downside: doesn’t reduce the energy cost.



One Variant: Random Search

* This is just grid search, but with randomly chosen points
INnstead of points on a grid.

* This solves the curse of dimensionality

 Don't need to increase the number of grid points exponentially
as the number of dimensions increases.

* Problem: with random search, not necessarily going to
get anywhere near the optimal parameters in a finite
sample.



One Variant: “Best Ball”

 Works with epochs.

* At each epoch, do a small grid search around the
current hyperparameter settings

 Then evaluate the objective and choose the “best ball”

* The cpoice of parameters that gave the best objective for that
epoc

 And repeat until a solution of desired quality is achieved.



An Alternative: Bayesian Optimization

« Statistical approach for minimizing noisy black-box
functions.

* |dea: learn a statistical model of the function from
hyperparameter values to the loss function

« Then choose parameters to minimize the loss under this model

* Main benefit: choose the hyperparameters to test not at

random, but in a way that gives the most information about
the model

* This lets it learn faster than grid search



Etfect of Bayesian Optimization

« Downside: it's a pretty heavyweight method
 The updates are not as simple-to-implement as grid search

« Upside: empirically it has been demonstrated to get
better results in fewer experiments
« Compared with grid search and random search

» Pretty widely used method
» Lots of research opportunities here.



A related method: DFO

* Derivative-free optimization
* Also called zeroth-order optimization

 These methods optimize a function using only
evaluations, no derivatives

* |deal for use with hyperparameter optimization
« Also ideal for reinforcement learning



The opposite of DFO

Gradient-based optimization

* These strategies say: “I'm doing SGD to learn, | may as
well use it to optimize my hyperparameters.”

« When we can efficiently differentiate with respect to the
hyperparameters, this strategy actually works pretty
well.

« But generally, we can’t do it.



Methods that Look at the Data

« Many methods look at curvature/variance info to decide

how to set hyperparameters, and update their settings
throughout the algorithm

« Example: ADAGRAD

« Example: Adam
 Which you will be reading in a few weeks.



Evaluating the Hyperparameter
Optimization



How to evaluate the hyperparameters?

« Unlike the model parameters, we're not given a loss
function

« Can't we just use the training loss?

* Not always: we don't want to overfit the
hyperparameters
» Especially not when they are things that affect the model



Cross-Validation

« Partition part of the available data to create an
validation dataset that we don't use for training.

 Then use that set to evaluate the hyperparameters.

» Typically, multiple rounds of cross-validation are
performed using different partitions

« Can get a very good sense of how good the hyperparameters
are

« But at a significant computational cost!



Evaluating the System Cost

 In practice we don’t just care about the statistics
* Not just about the accuracy after a fixed number of iterations

« We care about wall-clock time, and we care about energy
« How much did solving this problem actually cost?

* The parameters we chose can affect these systems
properties
« As we saw with our SVRG demo!

* Need to include systems cost as part of the metric!



Hardware etticiency
 How long does an iteration take, on average?

 Hardware efficiency measures the systems cost of doing a
single update.

« Key point: many hyperparameters do not affect hardware
efficiency

« Which ones?

« Which hyperparameters do affect hardware efficiency?



Statistical Etticiency

« How many iterations do we need to get to a specified
level of accuracy?

« Statistical efficiency measures how many updates we
need to get an answer of the quality that we want.

 Which hyperparameters affect statistical efficiency?
« And which ones don't?



Total performance
» Total cost of running the algorithm is:
HARDWARE EFFICIENCY x STATISTICAL EFFICIENCY

- We can estimate these quantities separately, then use
their product to evaluate our hyperparameters.

* For example, we can use theory to evaluate statistical
efficiency and a hardware model to evaluate hardware
efficiency.



Benetits of Looking at Both

« Looking at both statistical and hardware efficiency
together has some important benefits!

 Many times the optimal parameter settings are
different than if you set the parameters to optimize
hardware efficiency or statistical efficiency individually.

* There's a lot of open research opportunities here!



Questions?

 Upcoming things
« Paper review 3a or 3b due on Monday
 Paper Presentation #4 on Monday



