
Getting SGD Off The Ground II
Basic Techniques We Always Use CS6787 Lecture 3 — Spring 2024

To get SGD off the ground, we don’t just need software.
Here are some basic statistical techniques that we pretty
much always use…

Overfitting,
Generalization Error, and
Regularization

Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new
examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this
distribution

h(w) =
1

N

NX

i=1

f(w;xi)

h̄(w) = Ex⇠� [f(w;x)]

Overfitting

• Minimizing the training loss doesn't generally
minimize the expected loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training
set and the expected loss on new examples is called the
generalization error

• Even a model that has high accuracy on the training set
can have terrible performance on new examples
• Phenomenon is called overfitting

Demo

How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with
little or no extra computational cost?

• Notice from the demo that some loss functions do
better than others
• Can we modify our loss function to prevent overfitting?

Regularization

• Add an extra regularization term to the objective
function

• Most popular type: L2 regularization

• Also popular: L1 regularization

h(w) =
1

N

NX

i=1

f(w;xi) + �2kwk22 =
1

N

NX

i=1

f(w;xi) + �2
dX

k=1

x2
k

h(w) =
1

N

NX

i=1

f(w;xi) + �kwk1 =
1

N

NX

i=1

f(w;xi) + �
dX

k=1

kxkk

Benefits of Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting

wt+1 = (1� 2↵t�
2)wt � ↵trf(wt;xit)

Demo

How to choose the regularization parameter?

• One way is to use an independent validation set to
estimate the test error, and set the regularization
parameter manually so that it is high enough to avoid
overfitting
• This is what we saw in the demo

• But doing this naively can be computationally
expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization

More general forms of regularization

•Regularization is used more generally to
describe anything that helps prevent overfitting
• By biasing learning by making some models more

desirable a priori

•Many techniques that give throughput
improvements also have a regularizing effect
• Sometimes: a win-win of better statistical and

hardware performance

Early Stopping

Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very
large (asymptotically infinite) number of points from it, then
run stochastic gradient descent on that training set for only
N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true

distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large

Consider a second setting
• Setting 1: we have a distribution ɸ and we sample a very

large (asymptotically infinite) number of points from it, then
run stochastic gradient descent on that training set for only
N iterations.

• Setting 2: we have a distribution ɸ and we sample N points
from it, then run stochastic gradient descent using each of
these points exactly once.

• What is the difference between the output of SGD in these
two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit

Early Stopping

• Motivation: if we only use each training example once
for SGD, then we can’t overfit.

• So if we only use each example a few times, we
probably won’t overfit too much.

• Early stopping: just stop running SGD before it
converges.

Benefits of Early Stopping

•Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make

systems run faster

•Helps with overfitting

•BE SURE TO TEST IT CORRECTLY!

Another class of technique:
Acceleration and Momentum

How does the step size affect convergence?

• Let’s go back to gradient descent

• Simplest possible case: a quadratic function

xt+1 = xt � ↵rf(xt)

f(x) =
1

2
x2

xt+1 = xt � ↵xt = (1� ↵)xt

Step size vs. convergence: graphically

|xt+1 � 0| = |1� ↵| |xt � 0|

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

What if the curvature is different?

f(x) = 2x2 xt+1 = xt � 4↵xt = (1� 4↵)xt

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

previou
s f

Step size vs. curvature

• For these one-dimensional quadratics, how we should
set the step size depends on the curvature
• More curvature à smaller ideal step size

• What about higher-dimensional problems?
• Let’s look at a really simple quadratic that’s just a sum of our

examples.

f(x, y) =
1

2
x2 + 2y2

Simple two dimensional problem

• Gradient descent:

f(x, y) =
1

2
x2 + 2y2


xt+1

yt+1

�
=


xt

yt

�
� ↵


xt

4yt

�

=


1� ↵ 0
0 1� 4↵

� 
xt

yt

�


xt+1

yt+1

�
=


xt

yt

�
� ↵


xt

4yt

�

=


1� ↵ 0
0 1� 4↵

� 
xt

yt

�

What’s the convergence rate?

• Look at the worst-case contraction factor of the update

• Contraction is maximum of previous two values.

max
x,y

����


1� ↵ 0
0 1� 4↵

� 
x
y

�����
����


x
y

�����
= max(|1� ↵| , |1� 4↵|)

Convergence of two-dimensional quadratic

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

previous f

new f

What does this example show?

• We’d like to set the step size larger for dimension with
less curvature, and smaller for the dimension with more
curvature.

• But we can’t, because there is only a single step-size
parameter.

• There’s a trade-off
• Optimal convergence rate is substantially worse than what

we’d get in each scenario individually — individually we
converge in one iteration.

For general quadratics

• For PSD symmetric A,

• Gradient descent has update step

• What does the convergence rate look like in general?

f(x) =
1

2
xTAx

xt+1 = xt � ↵Axt = (I � ↵A)xt

Convergence rate for general quadratics

max
x

k(I � ↵A)xk
kxk = max

x

1

kxk

�����

I � ↵

nX

i=1

�iuiu
T
i

!
x

�����

= max
x

��Pn
i=1(1� ↵�i)uiuT

i x
��

��Pn
i=1 uiuT

i x
��

= max
i

|1� ↵�i|

= max(1� ↵�min,↵�max � 1)

max
x

k(I � ↵A)xk
kxk = max

x

1

kxk

�����

I � ↵

nX

i=1

�iuiu
T
i

!
x

�����

= max
x

��Pn
i=1(1� ↵�i)uiuT

i x
��

��Pn
i=1 uiuT

i x
��

= max
i

|1� ↵�i|

= max(1� ↵�min,↵�max � 1)

Optimal convergence rate

• Minimize:

• Optimal value occurs when

• Optimal rate is

max(1� ↵�min,↵�max � 1)

1� ↵�min = ↵�max � 1) ↵ =
2

�max + �min

max(1� ↵�min,↵�max � 1) =
�max � �min

�max + �min

What affects this optimal rate?

• Here, 𝜅 is called the
condition number of the
matrix A.

• Problems with larger
condition numbers
converge slower.
• Called poorly conditioned.

rate =
�max � �min

�max + �min

=
�max/�min � 1

�max/�min + 1

=
� 1

+ 1
.

 =
�max

�min

Poorly conditioned problems

• Intuitively, these are problems that are highly curved in
some directions but flat in others

• Happens pretty often in machine learning
• Measure something unrelated à low curvature in that

direction
• Also affects stochastic gradient descent

• How do we deal with this?

Momentum

Motivation

• Can we tell the difference between the curved and flat
directions using information that is already available to the
algorithm?

• Idea: in the one-dimensional case, if the gradients are
reversing sign, then the step size is too large
• Because we’re over-shooting the optimum
• And if the gradients stay in the same direction, then step size is too

small

• Can we leverage this to make steps smaller when gradients
reverse sign and larger when gradients are consistently in
the same direction?

Polyak Momentum

• Add extra momentum term to gradient descent

• Intuition: if current gradient step is in same direction as
previous step, then move a little further in that direction.
• And if it’s in the opposite direction, move less far.

• Also known as the heavy ball method.

xt+1 = xt � ↵rf(xt) + �(xt � xt�1)

Momentum for 1D Quadratics

• Momentum gradient descent gives

f(x) =
�

2
x2

xt+1 = xt � ↵�xt + �(xt � xt�1)

= (1 + � � ↵�)xt � �xt�1

Characterizing momentum for 1D quadratics

• Start with

• Trick: let

xt+1 = (1 + � � ↵�)xt � �xt�1

xt = �t/2zt

�(t+1)/2zt+1 = (1 + � � ↵�)�t/2zt � � · �(t�1)/2zt�1

zt+1 =
1 + � � ↵�p

�
zt � zt�1

Characterizing momentum (continued)

• Let

• Then we get the simplified characterization

• This is a degree-t polynomial in u

u =
1 + � � ↵�

2
p
�

zt+1 = 2uzt � zt�1

Chebyshev Polynomials

• If we initialize such that then these are a
special family of polynomials called the Chebyshev
polynomials

• Standard notation:

• These polynomials have an important property: for all t

z0 = 1, z1 = u

zt+1 = 2uzt � zt�1

�1  u  1) �1  zt  1

Tt+1(u) = 2uTt(u)� Tt�1(u)

To see why they are bounded…

• Chebyshev polynomials

• We can write them in terms of trig functions

z0 = 1, z1 = u

zt+1 = 2uzt � zt�1

<latexit sha1_base64="AMZ3zbS6T7kSpVNPHrX+tXhN8jw=">AAADXnicjVLPa9RAFJ4k2tattVu9CF4GF2WXuktSpPUiFL14rNBtC5slTCZvu0MnkzDzIiwh/6Q38eKf4iSb2rop4oOB977vfe8XE+dSGPT9H47rPXq8tb3zpLf7dO/Zfv/g+YXJCs1hyjOZ6auYGZBCwRQFSrjKNbA0lnAZ33yu+ctvoI3I1Dmucpin7FqJheAMLRQdOBjyzAyHeBiMQlwCshF9+5E24G3cBEhvwzENjVB3bB3csWHYayuO/7vi4b8qvmtKFioBHWvGoewMXEU1ZjctNSTVeVRarhoWo6rue0Q72gdlRdVN/DPDZgdsqo+7ivtbd8car8ea9KL+wJ/4jdGuE7TOgLR2FvW/h0nGixQUcsmMmQV+jvOSaRRcQmXvYyBn/IZdw8y6iqVg5mXTvaJvLJLQRabtU0gb9L6iZKkxqzS2mSnDpdnkavAhblbg4sO8FCovEBRfN1oUkmJG679GE6GBo1xZh3Et7KyUL5m9FtofWR8h2Fy561wcTYLjSfD1/eD0U3uOHfKKvCZDEpATckq+kDMyJdz56Tpuz911f3lb3p63v051nVbzgvxl3svfko4MWQ==</latexit>

cos((t+ 1)✓) = cos(✓) cos(t✓)� sin(✓) sin(t✓)

cos((t� 1)✓) = cos(✓) cos(t✓) + sin(✓) sin(t✓),

cos((t+ 1)✓)| {z }
Tt+1(u)

= 2 cos(✓)| {z }
u

cos(t✓)| {z }
Tt(u)

� cos((t� 1)✓)| {z }
Tt�1(u)

.

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T0(u) = 1

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T1(u) = u

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T2(u) = 2u2 � 1

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Characterizing momentum (continued)

• What does this mean for our 1D quadratics?
• Recall that we let

• So

xt = �t/2zt

xt = �t/2 · x0 · Tt(u)

= �t/2 · x0 · Tt

✓
1 + � � ↵�

2
p
�

◆

�1  1 + � � ↵�

2
p
�

 1) |xt|  �t/2 |x0|

Consequences of momentum analysis

• Convergence rate depends only on momentum parameter
β
• Not on step size or curvature.

• We don’t need to be that precise in setting the step size
• It just needs to be within a window
• Pointed out in “YellowFin and the Art of Momentum Tuning” by

Zhang et. al.

• If we have a multidimensional quadratic problem, the
convergence rate will be the same in all directions
• This is different from the gradient descent case where we had a

trade-off

Choosing the parameters

• How should we set the step size and momentum
parameter if we only have bounds on λ ?

• Need:

• Suffices to have:

�1  1 + � � ↵�

2
p
�

 1

�1 =
1 + � � ↵�max

2
p
�

and
1 + � � ↵�min

2
p
�

= 1

Choosing the parameters (continued)

• Adding both equations:

0 =
2 + 2� � ↵�max � ↵�min

2
p
�

0 = 2 + 2� � ↵�max � ↵�min

↵ =
2 + 2�

�max + �min

Choosing the parameters (continued)

• Subtracting both equations:

1 + � � ↵�min � 1� � + ↵�max

2
p
�

= 2

↵(�max � �min)

2
p
�

= 2

Choosing the parameters (continued)

• Combining these results:

2 + 2�

�max + �min
· (�max � �min)

2
p
�

= 2

↵(�max � �min)

2
p
�

= 2↵ =
2 + 2�

�max + �min

0 = 1� 2
p
�
�max + �min

�max � �min
+ �

Choosing the parameters (continued)

• Quadratic formula: 0 = 1� 2
p
�
�max + �min

�max � �min
+ �

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p


� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p


� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p


� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

• But with momentum, the optimal rate is

• This is called convergence at an accelerated rate

� 1

+ 1

p
� =

p
� 1p
+ 1

Demo

Setting the parameters

• How do we set the momentum in practice for machine
learning?

• One method: hyperparameter optimization

• Another method: just set β = 0.9
• Works across a range of problems
• Actually quite popular in deep learning

Nesterov momentum

What about more general functions?

• Previous analysis was for quadratics

• Does this work for general convex functions?

• Answer: not in general
• We need to do something slightly different

Nesterov Momentum

• Slightly different rule

• Main difference: separate the momentum state from
the point that we are calculating the gradient at.

xt+1 = yt � ↵rf(yt)

yt+1 = xt+1 + �(xt+1 � xt)

Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex
problem

• Optimal assignment of the parameters:

sp
� 1p


↵ =
1

�max
, � =

p
� 1p
+ 1

Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time

• Significant speedups in practice

Demo

What about network architectures?

• All our above analysis was for gradient descent
• Looking at how we minimize the objective

• But the structure of the hypothesis class (the network
architecture) is just as important for optimization
• We’ll see two examples of network arch on Wednesday

• Also note that Programming Assignment 1 is out.

