Parallelism

CS6787 Lecture 8 — Fall 2021



So far

 We've been talking about algorithms

 We've been talking about ways to optimize their
parameters

« But we haven't talked about the underlying hardware

« How does the properties of the hardware affect our
performance?

« How should we implement our algorithms to best utilize our
resources?



What does modern ML hardware look like?

 Lots of different types
« CPUs
« GPUs
c FPGAS

» Specialized accelerators

« Common thread: all of these architectures are highly
parallel



Parallelism: A History

 The good old days: if | want my program to run faster, | can
just wait

 Moore's law —transistors on a chip doubles every 18 months
 Dennard scaling — transistors shrink, power density stays constant

« This “free lunch” drove a wave of innovation in computing
« Applications with bigger data were constantly becoming feasible
* Drove a couple of Al boom-bust cycles

« But also drove a lack of concern for systems efficiency
« Why work on making efficient systems when | can just wait instead?



Moore’s Law: A Graphic
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The End of the Free Lunch

* In 2005, Herb Sutter declares — “The Free Lunch Is
Over” and that there will be “A Fundamental Turn
Toward Concurrency in Software”

 He's not the only one that was saying this.

* YOou can see this on the previous figure as trends start to
flatten out.

- Why? Power
 Dennard scaling started breaking down
« Too much heat at high clock frequencies — chip will melt



The Solution: Parallelism

* | can re-write my program in parallel

 Moore's law is still in effect
« Transistor density still increasing exponentially

« Use the transistors to add parallel units to the chip
* Increases throughput, but not speed



The Effect of Parallelism

* Pros:
« Can continue to get speedups from added transistors

« Can even get speedups beyond a single chip or a single
machine

 Cons:
« Can't just sit and wait for things to get faster
* Need to work to get performance improvements

* Need to develop new frameworks and methods to parallelize
automatically



What benefits can we expect

 |f we run In parallel on N copies of our compute unit,

naively we would expect our program to run N times
faster

* Does this always happen in practice?

 No! Why?



Amdahl’s Law

« Gives the theoretical speedup of a program when it's
parallelized
1
p

(1-p)+ 3

Sla,tency (3 ) —

* Sjatency IS total speedup
* p is the parallelizable portion of the algorithm
* s isthe number of parallel workers/amount of parallelism

From Wikipedia



Amdahl’s Law (continued)
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Consequences of Amdahl’s Law

* Diminishing marginal returns as we increase the
parallelism

- Can never actually achieve a linear or super-linear
speedup as the amount of parallel workers increases

* Is this always true in practice?

* No! Sometimes we do get super-linear speedup.
When?



What does modern parallel hardware look like?

« CPUs

 Many parallel cores
« Deep parallel cache hierarchies — taking up most of the area
« Often many parallel CPU sockets in a machine

- GPUs

« Can run way more numerical computations in parallel than a CPU
« Loads of lightweight cores running together

* In general: can run many heterogeneous machines in
parallel in a cluster



Sources of parallelism

From most fine-grained to most course-grained



On CPUs: Instruction-Level Parallelism

« How many instructions in the instruction stream can
be executed simultaneously?

* For example:

« C= A: B The first two
« Z=X*Y instructions here can be
«S=C+/Z executed in parallel

« Important for pipelining, and used fully in superscalar
processors.



On CPUs: SIMD/Vector Parallelism

« Single-Instruction Multiple-Data
« Perform the same operation on multiple data points in parallel

» Uses registers that store and process vectors of multiple
data points

» Latest standards use 512-bit registers, which can hold 16 floating
point numbers

* A long series of instruction set extensions for this on CPUs
* SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, ...

« Critical for dense linear algebra operations common in ML



On CPUs: Multicore Parallelism

« Modern CPUs come with multiple identical cores on the
same die

. 1(:Zorﬁs can work independently on independent parallel
asks

« Unlike ILP and SIMD

« Cores communicate through shared memory abstraction

 They can read and write the same memory space
* This is done through a sophisticated cache hierarchy

* Significant cost to synchronize multiple CPUs working
together



On CPUs: Multi-socket parallelism

« Modern motherboards have multiple sockets for CPUs

« Cores on these CPUs still communicate through shared
memory

* But Iatency/throughput to access memory that is
“closer” to another CPU chip is worse than accessing
your own memory

* This is called non-uniform memory access (NUMA)



On GPUs: Stream Processing

. gi\{cen a stream of data, apply a series of operations to the
ata

« Operations are called kernel functions

* This type of compute pattern is well-suited to GPU
computation

« Because compared with CPUs, GPUs have much more of their area
devk?ted to arithmetic but much less devoted to memory and
caches

* There's additional parallel structure within a GPU

 For example, in CUDA threads running the same program are
organized into warps and run at the same time



On specialized accelerators and ASICs
- Whatever you want!

* The parallelism opportunities are limited only by the
available transistors

* We will see many new accelerators for ML with
different parallel structures and resources
« Some will look like FPGAs: e.g. CGRAS

« Some will just speed up one particular operation, such as
matrix-matrix multiply



The Distributed Setting

 Many workers communicate over a network

» Possibly heterogeneous workers including CPUs, GPUs, and
ASICs

« Usually no shared memory abstraction
 Workers communicate explicitly through passing messages

« Latency much higher than all other types of
parallelism
« Often need fundamentally different algorithms to handle this



DEMO



How to use parallelism in machine
learning



Recall

» Stochastic gradient descent

Tip1 = Ty — aV [ (245 y;,)

« Can write this as an algorithm:

cFort=1to T
 Choose a training example at random
« Compute the gradient and update the model
 Repeat.



How to run SGD in parallel?

* There are several places where we can extract
parallelism from SGD.

« We can use any or all of these places

« Often we use different ones to correspond to the different
sources of parallelism we have in the hardware we are using.



Parallelism within the Gradient Computation

* Try to compute the gradient samples themselves in
parallel

Tip1 = 2 — V(T4 9;,)

* Problems:
« We run this so many times, we will need to synchronize a lot

» Typical place to use: instruction level parallelism, SIMD
parallelism

« And distributed parallelism when using model/pipeline
parallelism



Parallelism with Minibatching

* Try to parallelize across the minibatch sum

B
Li4+1 — Tt — %va (93t§yzb)
b=1

* Problems:
« Still run this so many times, we will need to synchronize a lot

« Can have a tradeoff with statistical efficiency, since too much
mMinibatching can harm convergence

« Typical place to use: all types of parallelism



Parallelism across iterations

« Try to compute multiple iterations of SGD in parallel
« Parallelize the outer loop — usually a good idea

LTi4+1 = Tt — onf(a:t; yzt)
Ti4+1 = Tt — onf(x,y Y3, )
Tt+1 = Tt — onf(xt yzt)
Ti4+1 = Tt — onf(xt yzt)

* Problems:

« Naively, the outer loop is sequential, so we can’t do this without
fine-grained locking and frequent synchronization

» Typical place to use: multi-core/multi-socket/cluster
parallelism



Parallelism for hyperparameter optimization

« Just run multiple copies of the whole algorithm
Independently, and use them to do hyperparameter
optimization

* Problems:
« Can't do this if you don’t want to do hyperparameter optimization
 Isn’t actually useful once you’ve already set your parameters

 Typical place to use: distributed computation



Parallelism for ensembling

« Just like before, run multiple copies of the whole
algorithm mdependently, and use them to produce an
ensemble classifier

 Problems:

« Can't do this if you don't want to train an ensemble classifier
* Now the difficulty for learning

 Typical place to use: distributed computation



What about our other methods?

* We can speed up all our methods with parallel
computing
* Minibatching — has a close connection with parallelism
* SVRG
« Momentum

 And any SGD-like algorithm lets us use the same ways
to extract parallelism from it

* Things like gradient descent, stochastic coordinate descent,
stochastic gradient Langevin dynamics, and many others.



Asynchronous Parallelism



Limits on parallel performance

* Synchronization

 Have to synchronize to keep the workers aware of each other’s
updates to the model — otherwise can introduce errors

« Synchronization can be very expensive
 Have to stop all the workers and wait for the slowest one

* Have to wait for several round-trip times through a high-
latency channel

* Is there something we can do about this?



Idea: Just Don’t Synchronize

« Not synchronizing adds errors due to race conditions

 But our methods were already noisy — maybe these
errors are fine

 |f we don't synchronize, get almost perfect parallel
speedup



Fast Parallel SGD: HOGWILD!

Multiple parallel workers

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random

* Update the model X+ using a gradient estimate * Update the model X+ using a gradient estimate * Update the model X+ using a gradient estimate

Tit1 = T — aV f(@e; i,) . Ti41 = oy — aV (@t yi,) Tit1 = T — aV f(@e; i,)

e Iterate \l'll] * Iterate [I]] * Iterate

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a tra ning example ¥/;, uniformly at random

a1 en

Update the model I+ using a gradient estimate * Update tt e model X+ using a gradient estimate

Tyl = Tt — Oévf(l'ﬁ yit)

* Update the model X+ using a gradient estimate
Tip1 = T — aV f(z4 yi,) Tip1 = T — aV f(z4 yi,)

* Iterate . * Iterate (x * Iterate

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a tra ning example ¥/;, uniformly at random

* Update the model X+ using a gradient estimate * Update tl.e model X+ using a gradient estimate * Update tt e model X+ using a gradient estimate
Tey1 = T — aV (2 ys,) Tey1 = T — aV (2 ys,) Tey1 = T — aV (2 ys,)

* Iterate * Iterate * Iterate

Asynchronous parallel updates-(no locks) to a single shared model

Lt




The Parameter Server Model



Parameter server model

e« A common model for distributed ML

/ Parallel workers -

o / Parallel workers - " Centralized
Tr:";'"g ' parameter
ata
—— Parallel workers - : S

\ Parallel workers -




Parameter server (continued)

« The parameter server holds the central copy of the weights

« Each worker computes gradients on minibatches the data
 Then sends those gradients back to the parameter server

» Periodically, the worker pulls an updated copy of the weights
from the parameter server.

« All this can be done asynchronously.

« We'll see more of this next week when we talk about
distributed learning!



Final Project
Feedback Activity



