
Parallelism
CS6787 Lecture 8 — Fall 2021



So far

• We’ve been talking about algorithms

• We’ve been talking about ways to optimize their 
parameters

• But we haven’t talked about the underlying hardware
• How does the properties of the hardware affect our 

performance?
• How should we implement our algorithms to best utilize our 

resources?



What does modern ML hardware look like?

• Lots of different types
•CPUs
•GPUs
• FPGAs
• Specialized accelerators

• Common thread: all of these architectures are highly 
parallel



Parallelism: A History

• The good old days: if I want my program to run faster, I can 
just wait
• Moore’s law —transistors on a chip doubles every 18 months
• Dennard scaling — transistors shrink, power density stays constant

• This “free lunch” drove a wave of innovation in computing
• Applications with bigger data were constantly becoming feasible
• Drove a couple of AI boom-bust cycles

• But also drove a lack of concern for systems efficiency
• Why work on making efficient systems when I can just wait instead?



Moore’s Law: A Graphic



The End of the Free Lunch

• In 2005, Herb Sutter declares — “The Free Lunch Is 
Over” and that there will be “A Fundamental Turn 
Toward Concurrency in Software”
• He’s not the only one that was saying this.

• You can see this on the previous figure as trends start to 
flatten out.

• Why? Power
• Dennard scaling started breaking down
• Too much heat at high clock frequencies — chip will melt



The Solution: Parallelism

• I can re-write my program in parallel

• Moore’s law is still in effect
• Transistor density still increasing exponentially

• Use the transistors to add parallel units to the chip
• Increases throughput, but not speed



The Effect of Parallelism

• Pros:
• Can continue to get speedups from added transistors
• Can even get speedups beyond a single chip or a single 

machine

• Cons:
• Can’t just sit and wait for things to get faster
• Need to work to get performance improvements
• Need to develop new frameworks and methods to parallelize 

automatically



What benefits can we expect

• If we run in parallel on N copies of our compute unit, 
naively we would expect our program to run N times 
faster

• Does this always happen in practice?

• No! Why?



Amdahl’s Law

• Gives the theoretical speedup of a program when it’s 
parallelized

• Slatency is total speedup
• p is the parallelizable portion of the algorithm
• s is the number of parallel workers/amount of parallelism

From Wikipedia



Amdahl’s Law (continued)

From Wikipedia



Consequences of Amdahl’s Law

• Diminishing marginal returns as we increase the 
parallelism

• Can never actually achieve a linear or super-linear 
speedup as the amount of parallel workers increases

• Is this always true in practice?

• No! Sometimes we do get super-linear speedup. 
When?



What does modern parallel hardware look like?

• CPUs
• Many parallel cores
• Deep parallel cache hierarchies — taking up most of the area
• Often many parallel CPU sockets in a machine

• GPUs
• Can run way more numerical computations in parallel than a CPU
• Loads of lightweight cores running together

• In general: can run many heterogeneous machines in 
parallel in a cluster



Sources of parallelism
From most fine-grained to most course-grained



On CPUs: Instruction-Level Parallelism

• How many instructions in the instruction stream can 
be executed simultaneously?

• For example:
• C = A * B
• Z = X * Y
• S = C + Z

• Important for pipelining, and used fully in superscalar 
processors.

The first two 
instructions here can be 
executed in parallel



On CPUs: SIMD/Vector Parallelism

• Single-Instruction Multiple-Data
• Perform the same operation on multiple data points in parallel

• Uses registers that store and process vectors of multiple 
data points
• Latest standards use 512-bit registers, which can hold 16 floating 

point numbers

• A long series of instruction set extensions for this on CPUs
• SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, …

• Critical for dense linear algebra operations common in ML 



On CPUs: Multicore Parallelism
• Modern CPUs come with multiple identical cores on the 

same die

• Cores can work independently on independent parallel 
tasks
• Unlike ILP and SIMD

• Cores communicate through shared memory abstraction
• They can read and write the same memory space
• This is done through a sophisticated cache hierarchy

• Significant cost to synchronize multiple CPUs working 
together



On CPUs: Multi-socket parallelism

• Modern motherboards have multiple sockets for CPUs

• Cores on these CPUs still communicate through shared 
memory

• But latency/throughput to access memory that is 
“closer” to another CPU chip is worse than accessing 
your own memory

• This is called non-uniform memory access (NUMA)



On GPUs: Stream Processing
• Given a stream of data, apply a series of operations to the 

data
• Operations are called kernel functions

• This type of compute pattern is well-suited to GPU 
computation
• Because compared with CPUs, GPUs have much more of their area 

devoted to arithmetic but much less devoted to memory and 
caches

• There’s additional parallel structure within a GPU
• For example, in CUDA threads running the same program are 

organized into warps and run at the same time



On specialized accelerators and ASICs

• Whatever you want!

• The parallelism opportunities are limited only by the 
available transistors

• We will see many new accelerators for ML with 
different parallel structures and resources
• Some will look like FPGAs: e.g. CGRAs
• Some will just speed up one particular operation, such as 

matrix-matrix multiply



The Distributed Setting

• Many workers communicate over a network
• Possibly heterogeneous workers including CPUs, GPUs, and 

ASICs

• Usually no shared memory abstraction
• Workers communicate explicitly through passing messages

• Latency much higher than all other types of 
parallelism
• Often need fundamentally different algorithms to handle this



DEMO



How to use parallelism in machine 
learning
From most fine-grained to most course-grained



Recall

• Stochastic gradient descent

• Can write this as an algorithm:

• For t = 1 to T
• Choose a training example at random
• Compute the gradient and update the model
• Repeat.

xt+1 = xt � ↵rf(xt; yĩt)



How to run SGD in parallel?

• There are several places where we can extract 
parallelism from SGD.

• We can use any or all of these places
• Often we use different ones to correspond to the different 

sources of parallelism we have in the hardware we are using.



Parallelism within the Gradient Computation

• Try to compute the gradient samples themselves in 
parallel

• Problems:
• We run this so many times, we will need to synchronize a lot

• Typical place to use: instruction level parallelism, SIMD 
parallelism
• And distributed parallelism when using model/pipeline 

parallelism

xt+1 = xt � ↵rf(xt; yĩt)



Parallelism with Minibatching

• Try to parallelize across the minibatch sum

• Problems:
• Still run this so many times, we will need to synchronize a lot
• Can have a tradeoff with statistical efficiency, since too much 

minibatching can harm convergence

• Typical place to use: all types of parallelism

xt+1 = xt �
↵

B

BX

b=1

rf
�
xt; yĩb

�



Parallelism across iterations

• Try to compute multiple iterations of SGD in parallel
• Parallelize the outer loop — usually a good idea 

• Problems:
• Naively, the outer loop is sequential, so we can’t do this without 

fine-grained locking and frequent synchronization

• Typical place to use: multi-core/multi-socket/cluster 
parallelism

xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)
xt+1 = xt � ↵rf(xt; yĩt)



Parallelism for hyperparameter optimization

• Just run multiple copies of the whole algorithm 
independently, and use them to do hyperparameter
optimization

• Problems:
• Can’t do this if you don’t want to do hyperparameter optimization
• Isn’t actually useful once you’ve already set your parameters

• Typical place to use: distributed computation



Parallelism for ensembling

• Just like before, run multiple copies of the whole 
algorithm independently, and use them to produce an 
ensemble classifier

• Problems:
• Can’t do this if you don’t want to train an ensemble classifier
• Now the difficulty for learning

• Typical place to use: distributed computation



What about our other methods?

• We can speed up all our methods with parallel 
computing
• Minibatching — has a close connection with parallelism
• SVRG
• Momentum

• And any SGD-like algorithm lets us use the same ways 
to extract parallelism from it
• Things like gradient descent, stochastic coordinate descent, 

stochastic gradient Langevin dynamics, and many others.



Asynchronous Parallelism



Limits on parallel performance

• Synchronization
• Have to synchronize to keep the workers aware of each other’s 

updates to the model — otherwise can introduce errors

• Synchronization can be very expensive
• Have to stop all the workers and wait for the slowest one
• Have to wait for several round-trip times through a high-

latency channel

• Is there something we can do about this?



Idea: Just Don’t Synchronize

• Not synchronizing adds errors due to race conditions

• But our methods were already noisy — maybe these 
errors are fine

• If we don’t synchronize, get almost perfect parallel 
speedup 



Fast Parallel SGD: HOGWILD!
Multiple parallel workers

Asynchronous parallel updates (no locks) to a single shared model

xt



The Parameter Server Model



Parameter server model

• A common model for distributed ML

Centralized 
parameter 

server

Parallel workers

Parallel workers

Parallel workers

Parallel workers

Training 
data



Parameter server (continued)
• The parameter server holds the central copy of the weights

• Each worker computes gradients on minibatches the data
• Then sends those gradients back to the parameter server

• Periodically, the worker pulls an updated copy of the weights 
from the parameter server.

• All this can be done asynchronously.

• We’ll see more of this next week when we talk about 
distributed learning!



Final Project
Feedback Activity


