Parallelism

CS6787 Lecture 8 — Fall 2021

So far

 We've been talking about algorithms

 We've been talking about ways to optimize their
parameters

« But we haven't talked about the underlying hardware

« How does the properties of the hardware affect our
performance?

« How should we implement our algorithms to best utilize our
resources?

What does modern ML hardware look like?

 Lots of different types
« CPUs
« GPUs
c FPGAS

» Specialized accelerators

« Common thread: all of these architectures are highly
parallel

Parallelism: A History

 The good old days: if | want my program to run faster, | can
just wait

 Moore's law —transistors on a chip doubles every 18 months
 Dennard scaling — transistors shrink, power density stays constant

« This “free lunch” drove a wave of innovation in computing
« Applications with bigger data were constantly becoming feasible
* Drove a couple of Al boom-bust cycles

« But also drove a lack of concern for systems efficiency
« Why work on making efficient systems when | can just wait instead?

Moore’s Law: A Graphic

10’

10°

10°

10° }

Dotted line extrapolations by C. Moore

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Frequency
(MH2)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

The End of the Free Lunch

* In 2005, Herb Sutter declares — “The Free Lunch Is
Over” and that there will be “A Fundamental Turn
Toward Concurrency in Software”

 He's not the only one that was saying this.

* YOou can see this on the previous figure as trends start to
flatten out.

- Why? Power
 Dennard scaling started breaking down
« Too much heat at high clock frequencies — chip will melt

The Solution: Parallelism

* | can re-write my program in parallel

 Moore's law is still in effect
« Transistor density still increasing exponentially

« Use the transistors to add parallel units to the chip
* Increases throughput, but not speed

The Effect of Parallelism

* Pros:
« Can continue to get speedups from added transistors

« Can even get speedups beyond a single chip or a single
machine

 Cons:
« Can't just sit and wait for things to get faster
* Need to work to get performance improvements

* Need to develop new frameworks and methods to parallelize
automatically

What benefits can we expect

 |f we run In parallel on N copies of our compute unit,

naively we would expect our program to run N times
faster

* Does this always happen in practice?

 No! Why?

Amdahl’s Law

« Gives the theoretical speedup of a program when it's
parallelized
1
p

(1-p)+ 3

Sla,tency (3) —

* Sjatency IS total speedup
* p is the parallelizable portion of the algorithm
* s isthe number of parallel workers/amount of parallelism

From Wikipedia

Amdahl’s Law (continued)

Speedup

20

18

16

14

12

10

Amdahl's Law

Parallel portion
50%
75%
—— 90%
—— 5%

64
128
256
512

1024

Number of processors

2048

4096

8192

16384

32768

65536 -

From Wikipedia

Consequences of Amdahl’s Law

* Diminishing marginal returns as we increase the
parallelism

- Can never actually achieve a linear or super-linear
speedup as the amount of parallel workers increases

* Is this always true in practice?

* No! Sometimes we do get super-linear speedup.
When?

What does modern parallel hardware look like?

« CPUs

 Many parallel cores
« Deep parallel cache hierarchies — taking up most of the area
« Often many parallel CPU sockets in a machine

- GPUs

« Can run way more numerical computations in parallel than a CPU
« Loads of lightweight cores running together

* In general: can run many heterogeneous machines in
parallel in a cluster

Sources of parallelism

From most fine-grained to most course-grained

On CPUs: Instruction-Level Parallelism

« How many instructions in the instruction stream can
be executed simultaneously?

* For example:

« C= A: B The first two
« Z=X*Y instructions here can be
«S=C+/Z executed in parallel

« Important for pipelining, and used fully in superscalar
processors.

On CPUs: SIMD/Vector Parallelism

« Single-Instruction Multiple-Data
« Perform the same operation on multiple data points in parallel

» Uses registers that store and process vectors of multiple
data points

» Latest standards use 512-bit registers, which can hold 16 floating
point numbers

* A long series of instruction set extensions for this on CPUs
* SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, ...

« Critical for dense linear algebra operations common in ML

On CPUs: Multicore Parallelism

« Modern CPUs come with multiple identical cores on the
same die

. 1(:Zorﬁs can work independently on independent parallel
asks

« Unlike ILP and SIMD

« Cores communicate through shared memory abstraction

 They can read and write the same memory space
* This is done through a sophisticated cache hierarchy

* Significant cost to synchronize multiple CPUs working
together

On CPUs: Multi-socket parallelism

« Modern motherboards have multiple sockets for CPUs

« Cores on these CPUs still communicate through shared
memory

* But Iatency/throughput to access memory that is
“closer” to another CPU chip is worse than accessing
your own memory

* This is called non-uniform memory access (NUMA)

On GPUs: Stream Processing

. gi\{cen a stream of data, apply a series of operations to the
ata

« Operations are called kernel functions

* This type of compute pattern is well-suited to GPU
computation

« Because compared with CPUs, GPUs have much more of their area
devk?ted to arithmetic but much less devoted to memory and
caches

* There's additional parallel structure within a GPU

 For example, in CUDA threads running the same program are
organized into warps and run at the same time

On specialized accelerators and ASICs
- Whatever you want!

* The parallelism opportunities are limited only by the
available transistors

* We will see many new accelerators for ML with
different parallel structures and resources
« Some will look like FPGAs: e.g. CGRAS

« Some will just speed up one particular operation, such as
matrix-matrix multiply

The Distributed Setting

 Many workers communicate over a network

» Possibly heterogeneous workers including CPUs, GPUs, and
ASICs

« Usually no shared memory abstraction
 Workers communicate explicitly through passing messages

« Latency much higher than all other types of
parallelism
« Often need fundamentally different algorithms to handle this

DEMO

How to use parallelism in machine
learning

Recall

» Stochastic gradient descent

Tip1 = Ty — aV [(245 y;,)

« Can write this as an algorithm:

cFort=1to T
 Choose a training example at random
« Compute the gradient and update the model
 Repeat.

How to run SGD in parallel?

* There are several places where we can extract
parallelism from SGD.

« We can use any or all of these places

« Often we use different ones to correspond to the different
sources of parallelism we have in the hardware we are using.

Parallelism within the Gradient Computation

* Try to compute the gradient samples themselves in
parallel

Tip1 = 2 — V(T4 9;,)

* Problems:
« We run this so many times, we will need to synchronize a lot

» Typical place to use: instruction level parallelism, SIMD
parallelism

« And distributed parallelism when using model/pipeline
parallelism

Parallelism with Minibatching

* Try to parallelize across the minibatch sum

B
Li4+1 — Tt — %va (93t§yzb)
b=1

* Problems:
« Still run this so many times, we will need to synchronize a lot

« Can have a tradeoff with statistical efficiency, since too much
mMinibatching can harm convergence

« Typical place to use: all types of parallelism

Parallelism across iterations

« Try to compute multiple iterations of SGD in parallel
« Parallelize the outer loop — usually a good idea

LTi4+1 = Tt — onf(a:t; yzt)
Ti4+1 = Tt — onf(x,y Y3,)
Tt+1 = Tt — onf(xt yzt)
Ti4+1 = Tt — onf(xt yzt)

* Problems:

« Naively, the outer loop is sequential, so we can’t do this without
fine-grained locking and frequent synchronization

» Typical place to use: multi-core/multi-socket/cluster
parallelism

Parallelism for hyperparameter optimization

« Just run multiple copies of the whole algorithm
Independently, and use them to do hyperparameter
optimization

* Problems:
« Can't do this if you don’t want to do hyperparameter optimization
 Isn’t actually useful once you’ve already set your parameters

 Typical place to use: distributed computation

Parallelism for ensembling

« Just like before, run multiple copies of the whole
algorithm mdependently, and use them to produce an
ensemble classifier

 Problems:

« Can't do this if you don't want to train an ensemble classifier
* Now the difficulty for learning

 Typical place to use: distributed computation

What about our other methods?

* We can speed up all our methods with parallel
computing
* Minibatching — has a close connection with parallelism
* SVRG
« Momentum

 And any SGD-like algorithm lets us use the same ways
to extract parallelism from it

* Things like gradient descent, stochastic coordinate descent,
stochastic gradient Langevin dynamics, and many others.

Asynchronous Parallelism

Limits on parallel performance

* Synchronization

 Have to synchronize to keep the workers aware of each other’s
updates to the model — otherwise can introduce errors

« Synchronization can be very expensive
 Have to stop all the workers and wait for the slowest one

* Have to wait for several round-trip times through a high-
latency channel

* Is there something we can do about this?

Idea: Just Don’t Synchronize

« Not synchronizing adds errors due to race conditions

 But our methods were already noisy — maybe these
errors are fine

 |f we don't synchronize, get almost perfect parallel
speedup

Fast Parallel SGD: HOGWILD!

Multiple parallel workers

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random

* Update the model X+ using a gradient estimate * Update the model X+ using a gradient estimate * Update the model X+ using a gradient estimate

Tit1 = T — aV f(@e; i,) . Ti41 = oy — aV (@t yi,) Tit1 = T — aV f(@e; i,)

e Iterate \l'll] * Iterate [I]] * Iterate

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a tra ning example ¥/;, uniformly at random

a1 en

Update the model I+ using a gradient estimate * Update tt e model X+ using a gradient estimate

Tyl = Tt — Oévf(l'ﬁ yit)

* Update the model X+ using a gradient estimate
Tip1 = T — aV f(z4 yi,) Tip1 = T — aV f(z4 yi,)

* Iterate . * Iterate (x * Iterate

* Pick a training example ¥/;, uniformly at random * Pick a training example ¥/;, uniformly at random * Pick a tra ning example ¥/;, uniformly at random

* Update the model X+ using a gradient estimate * Update tl.e model X+ using a gradient estimate * Update tt e model X+ using a gradient estimate
Tey1 = T — aV (2 ys,) Tey1 = T — aV (2 ys,) Tey1 = T — aV (2 ys,)

* Iterate * Iterate * Iterate

Asynchronous parallel updates-(no locks) to a single shared model

Lt

The Parameter Server Model

Parameter server model

e« A common model for distributed ML

/ Parallel workers -

o / Parallel workers - " Centralized
Tr:";'"g ' parameter
ata
—— Parallel workers - : S

\ Parallel workers -

Parameter server (continued)

« The parameter server holds the central copy of the weights

« Each worker computes gradients on minibatches the data
 Then sends those gradients back to the parameter server

» Periodically, the worker pulls an updated copy of the weights
from the parameter server.

« All this can be done asynchronously.

« We'll see more of this next week when we talk about
distributed learning!

Final Project
Feedback Activity

