Parallelism

CS6787 Lecture 8 — Fall 2021

So far

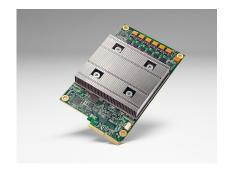
We've been talking about algorithms

We've been talking about ways to optimize their parameters

- But we haven't talked about the underlying hardware
 - How does the properties of the hardware affect our performance?
 - How should we implement our algorithms to best utilize our resources?

What does modern ML hardware look like?

- Lots of different types
 - CPUs
 - GPUs
 - FPGAs
 - Specialized accelerators

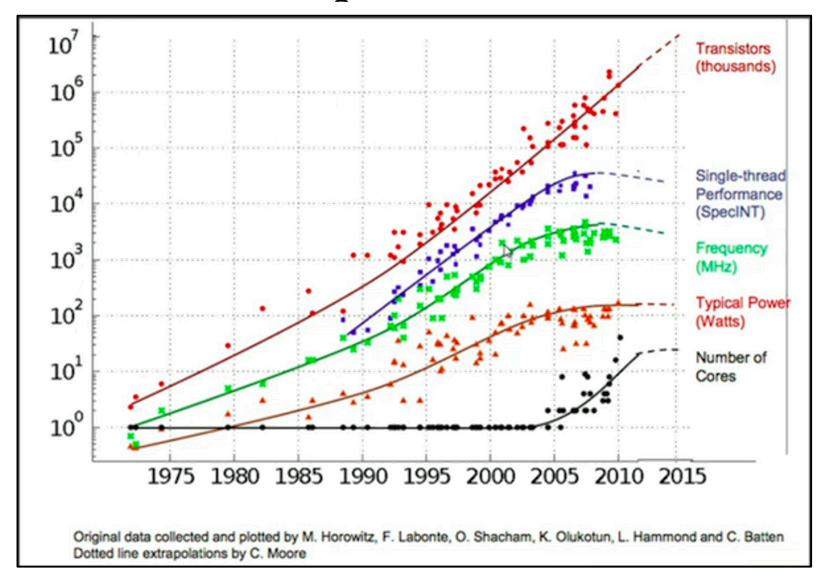


 Common thread: all of these architectures are highly parallel

Parallelism: A History

- The good old days: if I want my program to run faster, I can just wait
 - Moore's law —transistors on a chip doubles every 18 months
 - Dennard scaling transistors shrink, power density stays constant
- This "free lunch" drove a wave of innovation in computing
 - Applications with bigger data were constantly becoming feasible
 - Drove a couple of AI boom-bust cycles
- But also drove a lack of concern for systems efficiency
 - Why work on making efficient systems when I can just wait instead?

Moore's Law: A Graphic



The End of the Free Lunch

- In 2005, Herb Sutter declares "The Free Lunch Is Over" and that there will be "A Fundamental Turn Toward Concurrency in Software"
 - He's not the only one that was saying this.
- You can see this on the previous figure as trends start to flatten out.
- Why? Power
 - Dennard scaling started breaking down
 - Too much heat at high clock frequencies chip will melt

The Solution: Parallelism

• I can re-write my program in parallel

- Moore's law is still in effect
 - Transistor density still increasing exponentially
- Use the transistors to add parallel units to the chip
 - Increases throughput, but not speed

The Effect of Parallelism

Pros:

- Can continue to get speedups from added transistors
- Can even get speedups beyond a single chip or a single machine

Cons:

- Can't just sit and wait for things to get faster
- Need to work to get performance improvements
- Need to develop new frameworks and methods to parallelize automatically

What benefits can we expect

 If we run in parallel on N copies of our compute unit, naively we would expect our program to run N times faster

Does this always happen in practice?

• No! Why?

Amdahl's Law

 Gives the theoretical speedup of a program when it's parallelized

$$S_{ ext{latency}}(s) = rac{1}{(1-p)+rac{p}{s}}$$

- S_{latency} is total speedup
- **p** is the parallelizable portion of the algorithm
- s is the number of parallel workers/amount of parallelism

Amdahl's Law (continued)



Consequences of Amdahl's Law

Diminishing marginal returns as we increase the parallelism

 Can never actually achieve a linear or super-linear speedup as the amount of parallel workers increases

Is this always true in practice?

No! Sometimes we do get super-linear speedup.
When?

What does modern parallel hardware look like?

CPUs

- Many parallel cores
- Deep parallel cache hierarchies taking up most of the area
- Often many parallel CPU sockets in a machine

GPUs

- Can run way more numerical computations in parallel than a CPU
- Loads of lightweight cores running together
- In general: can run many heterogeneous machines in parallel in a **cluster**

Sources of parallelism

From most fine-grained to most course-grained

On CPUs: Instruction-Level Parallelism

 How many instructions in the instruction stream can be executed simultaneously?

For example:

•
$$Z = X * Y$$

•
$$S = C + Z$$

The first two instructions here can be executed in parallel

 Important for pipelining, and used fully in superscalar processors.

On CPUs: SIMD/Vector Parallelism

- Single-Instruction Multiple-Data
 - Perform the same operation on multiple data points in parallel
- Uses registers that store and process vectors of multiple data points
 - Latest standards use 512-bit registers, which can hold 16 floating point numbers
- A long series of instruction set extensions for this on CPUs
 - SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, ...
- Critical for dense linear algebra operations common in ML

On CPUs: Multicore Parallelism

- Modern CPUs come with multiple identical cores on the same die
- Cores can work independently on independent parallel tasks
 - Unlike ILP and SIMD
- Cores communicate through shared memory abstraction
 - They can read and write the same memory space
 - This is done through a sophisticated cache hierarchy
- Significant cost to synchronize multiple CPUs working together

On CPUs: Multi-socket parallelism

- Modern motherboards have multiple sockets for CPUs
- Cores on these CPUs still communicate through shared memory
- But latency/throughput to access memory that is "closer" to another CPU chip is worse than accessing your own memory
- This is called **non-uniform memory access** (NUMA)

On GPUs: Stream Processing

- Given a stream of data, apply a series of operations to the data
 - Operations are called kernel functions
- This type of compute pattern is well-suited to GPU computation
 - Because compared with CPUs, GPUs have much more of their area devoted to arithmetic but much less devoted to memory and caches
- There's additional parallel structure within a GPU
 - For example, in CUDA threads running the same program are organized into warps and run at the same time

On specialized accelerators and ASICs

Whatever you want!

- The parallelism opportunities are limited only by the available transistors
- We will see many new accelerators for ML with different parallel structures and resources
 - Some will look like FPGAs: e.g. CGRAs
 - Some will just speed up one particular operation, such as matrix-matrix multiply

The Distributed Setting

- Many workers communicate over a network
 - Possibly heterogeneous workers including CPUs, GPUs, and ASICs
- Usually no shared memory abstraction
 - Workers communicate explicitly through passing messages
- Latency much higher than all other types of parallelism
 - Often need fundamentally different algorithms to handle this

DEMO

How to use parallelism in machine learning

From most fine-grained to most course-grained

Recall

• Stochastic gradient descent

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t})$$

• Can write this as an algorithm:

• For **t = 1 to T**

- Choose a training example at random
- Compute the gradient and update the model
- Repeat.

How to run SGD in parallel?

• There are several places where we can extract parallelism from SGD.

- We can use any or all of these places
 - Often we use different ones to correspond to the different sources of parallelism we have in the hardware we are using.

Parallelism within the Gradient Computation

Try to compute the gradient samples themselves in parallel

$$x_{t+1} = x_t - \left| \alpha \nabla f(x_t; y_{\tilde{i}_t}) \right|$$

- Problems:
 - We run this so many times, we will need to synchronize a lot
- Typical place to use: instruction level parallelism, SIMD parallelism
 - And distributed parallelism when using model/pipeline parallelism

Parallelism with Minibatching

Try to parallelize across the minibatch sum

$$x_{t+1} = x_t - \frac{\alpha}{B} \sum_{b=1}^{B} \nabla f\left(x_t; y_{\tilde{i}_b}\right)$$

- Problems:
 - Still run this so many times, we will need to synchronize a lot
 - Can have a tradeoff with statistical efficiency, since too much minibatching can harm convergence
- Typical place to use: all types of parallelism

Parallelism across iterations

- Try to compute multiple iterations of SGD in parallel
 - Parallelize the outer loop usually a good idea

$$\begin{vmatrix} x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \\ x_{t+1} = x_t - \alpha \nabla f(x_t; y_{\tilde{i}_t}) \end{vmatrix}$$

- Problems:
 - Naively, the outer loop is sequential, so we can't do this without fine-grained locking and frequent synchronization
- Typical place to use: multi-core/multi-socket/cluster parallelism

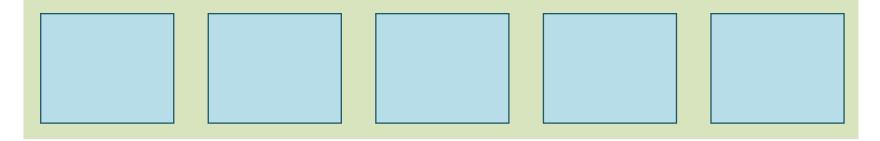
Parallelism for hyperparameter optimization

 Just run multiple copies of the whole algorithm independently, and use them to do hyperparameter optimization

- Problems:
 - Can't do this if you don't want to do hyperparameter optimization
 - Isn't actually useful once you've already set your parameters
- Typical place to use: distributed computation

Parallelism for ensembling

 Just like before, run multiple copies of the whole algorithm independently, and use them to produce an ensemble classifier



- Problems:
 - Can't do this if you don't want to train an ensemble classifier
 - Now the difficulty for learning
- Typical place to use: distributed computation

What about our other methods?

- We can speed up all our methods with parallel computing
 - Minibatching has a close connection with parallelism
 - SVRG
 - Momentum
- And any SGD-like algorithm lets us use the same ways to extract parallelism from it
 - Things like gradient descent, stochastic coordinate descent, stochastic gradient Langevin dynamics, and many others.

Asynchronous Parallelism

Limits on parallel performance

- Synchronization
 - Have to synchronize to keep the workers aware of each other's updates to the model — otherwise can introduce errors
- Synchronization can be very expensive
 - Have to stop all the workers and wait for the slowest one
 - Have to wait for several round-trip times through a highlatency channel
- Is there something we can do about this?

Idea: Just Don't Synchronize

Not synchronizing adds errors due to race conditions

 But our methods were already noisy — maybe these errors are fine

 If we don't synchronize, get almost perfect parallel speedup

Fast Parallel SGD: HOGWILD!

Multiple parallel workers

- Pick a training example y_{i_t} uniformly at random
- Update the model \mathcal{X}_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

111 · Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

- Pick a training example y_{i_t} uniformly at random
- Update the model \mathcal{X}_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate
 - $x_{t+1} = x_t \alpha \nabla f(x_t; y_{i_t})$
- Iterate

,,,,

m · Iterate

• Update the model x_t using a gradient estimate

• Pick a training example y_{i_t} uniformly at random

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

• Iterate

- Pick a training example y_{i_t} uniformly at random
- Update the model x_t using a gradient estimate

$$x_{t+1} = x_t - \alpha \nabla f(x_t; y_{i_t})$$

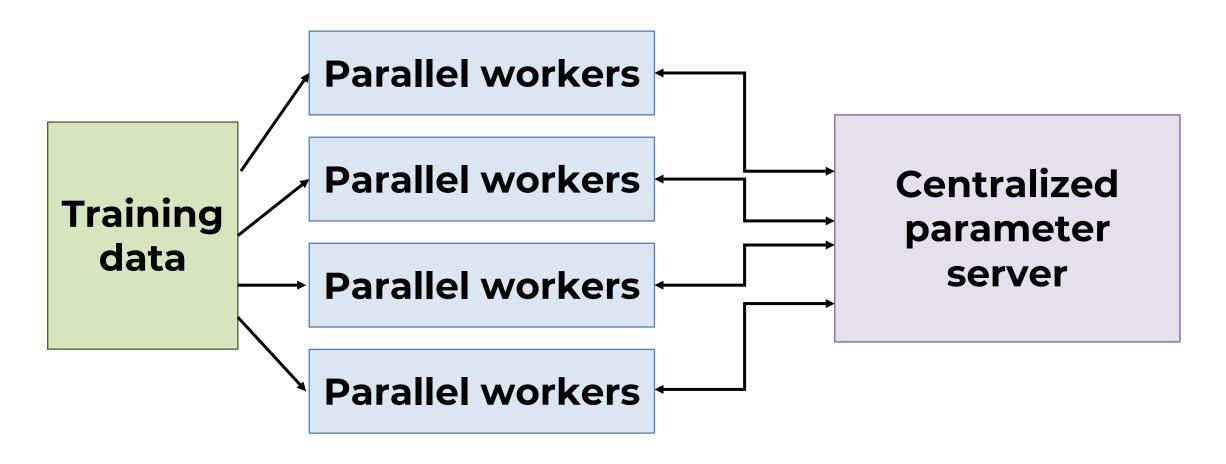
• Iterate

Asynchronous parallel updates (no locks) to a single shared model

The Parameter Server Model

Parameter server model

A common model for distributed ML



Parameter server (continued)

- The parameter server holds the central copy of the weights
- Each worker computes gradients on minibatches the data
 - Then sends those gradients back to the parameter server
- Periodically, the worker pulls an updated copy of the weights from the parameter server.
- All this can be done asynchronously.
- We'll see more of this next week when we talk about distributed learning!

Final Project Feedback Activity