Online vs. Oftline Learning,
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2021



Recall from Lecture 2

« Gradient descent
« Computationally slow to run
« Statistically converges at a linear rate

E |||l - *[*] = 0(+)

» Stochastic gradient descent (SGD)
« Fast iterations, no dependence on dataset size
« Statistically converges at a slower rate — or to a noise ball

E |[|lz - *|*| = 0(1/1)



Can We Do Better?

* Is there an algorithm that has the computational
structure of SGD, but still gets the fast linear rates of
gradient descent?

* Intermediate question: can we find problems for which
vanilla SGD already converges at a linear rate, rather
than converging to a noise ball?

 |f we find such a problem, we can understand why it
happens.



Rank-1 Matrix Completion

» Suppose you have some rank-1 matrix A = zz!

« Carelessly, you lost most of the entries of A

* You only have access to a sparse, randomly-chosen subset of
the entries

« Goal: recover the original matrix A from the sparse
samples.

« Applications include recommender systems, principal
component analysis, etc.



Matrix Completion as Optimization

« Simplest thing: minimize squared error between model
and samples.

minimize, E (ef xxle; — e Ae;)?

(i,7)Esamples ,
> (wimy — Ay)

* Is this convex? -
(i,7)Esamples

« We can try to solve this with SGD: randomly choose (i, j)
and run

Tii1 =1 — 20(e xate; — e;-FAej)(eieJTx eie; T)



Aside: What is the cost of SGD here?

 Update rule is
Tii1 =2 — 20(ef xate; — e;‘;rAej)(eieJT:E +ejel x)

* SUuppose we have K samples and
r e R"

« What is the time complexity of computing an iteration
of SGD?

o |t's really fast: O(1) — this makes SGD very attractive here



Demo



A Linear Rate for SGD? Why?

* Variance of the gradient estimator goes to zero over
time.

 What is the variance at a particular point x?
- 2 4
E HVf(x) ‘ ] — E H(G;-FZIZ.CIZ‘TGJ' — eiTAej)(eiejT.:U -+ eje;-rx)||2

(,7)€Esamples
4
— Z (ef wvx'e; — G?Aej)2((€?$)2 + (e 2)°)
(7,7)Esamples

« At an optimal point, xxT = A, the variance is zero!



The Role of Variance

 Hypothesis: If the variance becomes small when we get
close to the optimum, we converge at a linear rate.

[N fact, we can prove that we get a linear rate if for some
C .
Var (Vf(z)) < C|lz — 2"

« Or more generally

B||viw)| | <c|e[viw]| =cIv@s



Can we make this happen for any objective?

« One way to do It:
Vi(z) = Vf(z) - Vf(z*)
* [N expectation, this is the same since

E[Vg(z)]=Vf(z) - Vf(z")=Vf(z) -0

 And if the samples are Lipschitz continuous with
parameter L,

IVa(@)|® = IV f(z) = V()" < L o — 2"



Does this mean we can always get a linear rate?

* Yes! ..for any strongly convex problem where we know
the solution.

 Doesn’t seem very useful.

« What if we can approximate the solution? For  ~ z*
Vi(z) =V f(z) - V[f(2)

- But now our gradients are biased — SGD converges to & not x*



Unbiased gradients with approximate solutions

 We can force the gradient to be unbiased by letting
Vi(r) = Vf(z) - V(@) + B | V(@)

« Using a full gradient as an anchor to lower the variance

« But what is the computational cost of doing this?
* |s it feasible to compute the full gradient in every setting?
* [s it worth it to get a linear rate?



Online and Oftline Learning



Two Types of Settings for ML Problems

« Online learning
* The training examples arrive one-at-a-time as we are learning
« We don't have access to all the training examples

* Not even necessarily a finite training set — new training
examples may be generated in real time in response to e.g.
changes in the environment

« Offline learning
 We have access to all the training examples upfront
 The objective is a finite sum over the given training set



Online Learning

« Have some distribution of training examples, and goal

IS to o B
minimize,, Ez~distribution |10Ss(w; T )]

« But we don’t actually have an expression for the
distribution

« All we can do is draw samples from it
L1, L2,XL3, ...



Advantages of Online Learning

« Online learning generally doesn’t overfit as much

« Why? The training distribution is the same as the test
distribution.

« Online learning easily handles new data from the
environment

« Systems benefit: we don't need to materialize the entire
training set

« Great for scaling up to problems that don't fit in memory



Disadvantages of Online Learning

- Can't compute exact/full objectives and gradients
 Because we don't even know distribution

- Difficult to evaluate convergence

« Generally don’t reuse training examples multiple times
« So don't make efficient use of the cache for the training set

« Models sometimes catastrophically forget older
examples.



[Limitations on Online Learning

* 1-D least squares regression: for some distribution y over
R, _ _

. 1 2

minimize, E, ., i(x — u)

* Optimal solution is just the mean, regardless of what py
S

z" = By~ (U]



Limitations on Online Learning (continued)

* Suppose there were an online learning algorithm that
converged at a linear rate for this 1-D least squares problem.

Using t samples:
E (2, —z")] = O(y")

» But we know (from statistics) the lowest-variance estimator
for the mean of a distribution, given t samples, is just the
sample mean

1 1
= Zut = Var (u) = —Var ()

- Contradiction. No online algorithm can be this good!



Limitations on Online Learning (continued)

« Conclusion: there's no online learning algorithm that
converges at a linear rate for general convex problems.

* This doesn't mean that online SGD never converges at a
linear rate

 We saw that the matrix completion example did

* But It does suggest that if we want to make SGD
converge at a linear rate, we need more information
than what we have in the online setting.



Aside: Online Learning in Research

« Online learning is an active area of research.

« Just from a search of the titles, there were 28 papers

mentioning “online” learning in this year's ICML and 58
papers in this year's NeurlPS.

 These numbers are increasing from last year!

» Particularly interesting to us because of the
computational benefits of being able to run online.



Oftline Learning

- Offline or batch learning is the more traditional setting of
Minimizing a finite sum of training losses

1 n
minimize,, — Z [(w;xi, ys)
n 1=1
« Offline learning is often just defined as “not online learning”

* We have access to everything:
* The loss function |
* The training examples x
 The training labelsy



Benetits of Oftline Learning

- Can compute exact/full objectives and gradients

« Consequence: it's trivially possible to converge at a
linear rate

« Just use gradient descent

« Can we leverage this to make an SGD-like algorithm
fast?



Stochastic Variance-Reduced

Gradient (SVRG)



Recall: Unbiased low-variance samples

 From a few slides ago, we were looking at using samples of
the form 3 ) )
Vi(r) = Vf(z) - V(@) + B | V(@)

o A k
 These samples have reduced variance when & iscloseto X

« We asked when we could do this, and now we have an
answer:

« Only in the offline setting!

« Question: how do we use this in an algorithm?



How much did we reduce the variance?

* |f the gradient samples are L-Lipschitz continuous
+ And we abuse notation to define Var(u) = E [||u — E[u]||?]

~

Var (Vi(2)) = Var (Vi(z) - V/(#) + B[V f(@)])




Is this enough for a linear rate for SGD?

* No, variance at the optimum is reduced, but still not

zerol! 5
Var (Vg(z™)) < L2 |x™ — z||”.

* ldea: what if we used a sequence of Z that approaches
the optimum?

* Then the variance would go to zero over time!

* Intuition: if the variance goes to zero at a linear rate, then SGD
should also converge at a linear rate.



Is this enough? (continued)

. If we have a sequence of T that converges to the
optimum at a linear rate, then we can use it to reduce
the variance of SGD so that it converges to the optimum
at a linear rate.

 This also doesn’t seem useful.

- Critical insight: use the iterates of SGD as &

* S0, if SGD converges at a linear rate, then SGD will converge at
a linear rate

« Seems circular — but we can make it rigorous



How often to use full gradient samples?

- Can we use every iteration of SGD as an “anchor”
point?

« We could...but this would just be gradient descent.
Vi(x) = V(z) - Vi(2) + E V()]
=V f(z).

* Instead, use a full gradient sample periodically
« every K iterations of SGD for some hyperparameter K
 sometimes called an epoch



Stochastic Variance-Reduced Gradient (SVRG)

* Initialize Xq 1 arbitrarily

« Quter loop:fork=1to K
Tk ¢ Th—1,T
gk < V[f(2g) = E {Vf(i’k)}
Tko < Tk

* Inner loop:fort=1to T
« Sample f, at random from training set losses

Tt & Tht—1 — O (vfk,t(xk,t—l) — V fre(E1) + ?]k)



Computational Cost of SVRG

 Each inner loop runs for T iterations
« Has a computational cost of O(T)

 |f we have n examples, the outer loop gradient
computation has a computational cost of O(n)

* Over K total outer loop iterations, total time is
O(Kn + KT)



Memory Burden of SVRG

* |[n addition to the copy of the model that needs to be
stored for vanilla SGD, we also need to store
« An additional copy of the model vector for the anchor point &
« An additional vector to store its exact/full gradient

e If the model is of size d, we will need to store a total of
3d numbers

* Plus the training set, which is usually much larger

« Takeaway: no significant memory cost to run SVRG



[inear Rates for SVRG



Very Simple Proof that SVRG Converges

» Strategy: run the inner loop of SVRG long enough that
forsomey <1

E (o — 2| |zio| <7 llzno — 2|

 Show that a fixed T suffices for every epoch k
* This Is enough to show convergence at a linear rate. Why?

« YoUu'll see a tighter version of this proof in this week’s
paper.



Analysis of an Inner Iterate of SVRG

« Starting with the iterate:
Tkt = Tht—1 — O (ka,t(ivk,t—1) — V fre(@r) + §k>

« Let's simplify it a little by abusing notation to drop the k
subscripts

vy =21 —a (Vilzi) - V@) + V()



Analysis (continued)

» Expected distance to the optimum:

a:'t_l] ~E [

E [th — | T 1 — 2" — 0 (vf;(mt_l) _ V(@) + Vf(:?:)) H2

fEt—1]

* TO proce
term



Analysis (continued)

« Important property: for constant ¢, Var (X + ¢) = Var (X)

 We can use this to simplify the second order term:

Var (Vft(xt_l) ~VFi(2) + V() xt_l)




Analysis (continued)

» Substituting this back, we get

E |||z — 2|

| < e — | = 20(zi1 — @)V f(20-1) + 0P |V f (2-0) |
+02 (212 oy - |* + 227 || — 2|*)

 Now we can reduce the first part using strong
convexity/Lipschitz

E ([l - 2|

vio1| < Moy — P = 20 aeoy — o | + L7 ooy — 2

+a? (202 |lzioy — | + 202 || — 2*))



Analysis (continued)

 We can now take the full expectation, given the anchor
point

E {th ’ @} < (1 —2ap+ 30*L*)E \
« Next, for simplicity, let o= E {

} + 20202 ||& — ¥

|2

pr < (1 —2ap+ 3CV2L2),0t 1 + 20 L? pg

* SUppPOSse we want to contract by a factor of e. As long as
€ Pi1” Po-

pr < (1 —2ap+ 3a’L?)pi_1 + 2a°Lep;_4




Analysis (continued)

« Now we have

pr < (1 —2au+ 3042L2),0t L+ 20 Lep;_q

» Setting the step size such that au = 5a’L%e

2
v
Pt < (1 — 5L26> Pt—1




Analysis (continued)

* Now, this was all contingent upon e p¢.1> Po.

there?



Analysis of Inner Loop Is Done!

2

 We've shown that if we run for ¢ > iterations,

112

1
#| < |z - o)

E (o — 2*|°|2| < -




Outer Loop Analysis

* Applying this recursively,

E |[|lax - 2°|*| < e [|io — 27|

* SO, to get down to error e we need K iterations, where

[l
k > log
€




Bringing it Together

» Total number of stochastic gradient iterations needed is

512 to — 2*||° 1
NS E)

1 € €

 This is a linear rate!

« Although there’s a much tighter proof in the paper this week
with better dependence on the condition number.



Demo



Issues with Variance Reduction

« Computational cost
« Overfitting
* Interaction with other techniques

« Choosing parameters
 Metaparameter optimization



Other Methods for Variance

Reduction



SAG

» Stochastic average gradient

* At each step, randomly update a single example’'s
gradient estimate using the current iterate, like SGD

« But, use the sum of all gradient estimates to perform
an update



Systems Comparison: SAG vs SVRG

* SAG requires us to store a gradient sample for each
training example

 What is the memory cost of doing this, if we have n
training examples and our model has dimension d?

* Answer: it's O(nd)

« Compare to SVRG which required O(3d)



Sample Orders

« “Standard” SGD chooses examples independently at
random at each step

* Instead: sample without replacement
« gradient errors across the dataset cancel out over an epoch

° Im roves convergence rate N strongly convex case from
(1/t) to O(1/t?)

 No computational overhead! So we usually do it



Many other variance reduction methods

* SAG

 SAGA

* SVRG

« SDCA - stochastic dual coordinate ascent
» Several methods in the distributed setting
e Etc.



Questions?

 Upcoming things
» Paper Presentation #3 on Monday — read paper before
class

* Paper Review

|

;2 due on Monday.



