
Online vs. Offline Learning,
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2021

Recall from Lecture 2

• Gradient descent
• Computationally slow to run
• Statistically converges at a linear rate

• Stochastic gradient descent (SGD)
• Fast iterations, no dependence on dataset size
• Statistically converges at a slower rate — or to a noise ball

E
h
kxt � x

⇤k2
i
= O(�t)

E
h
kxt � x

⇤k2
i
= O(1/t)

Can We Do Better?

• Is there an algorithm that has the computational
structure of SGD, but still gets the fast linear rates of
gradient descent?

• Intermediate question: can we find problems for which
vanilla SGD already converges at a linear rate, rather
than converging to a noise ball?
• If we find such a problem, we can understand why it

happens.

Rank-1 Matrix Completion

• Suppose you have some rank-1 matrix

• Carelessly, you lost most of the entries of A
• You only have access to a sparse, randomly-chosen subset of

the entries

• Goal: recover the original matrix A from the sparse
samples.
• Applications include recommender systems, principal

component analysis, etc.

A = xxT

Matrix Completion as Optimization

• Simplest thing: minimize squared error between model
and samples.

• Is this convex?

• We can try to solve this with SGD: randomly choose (i, j)
and run

minimizex
X

(i,j)2samples

(eTi xx
T ej � eTi Aej)

2

xt+1 = xt � 2↵(eTi xx
T ej � eTi Aej)(eie

T
j x+ eje

T
i x)

X

(i,j)2samples

(xixj �Aij)
2

<latexit sha1_base64="gK6qxinoQZVt+6r1aM2qeU/kwQY=">AAACHXicbVBNTxsxEPUCpWkokJYjF4sIKUgl2k0j0WNaLj2CRD6kbLryOhNwYntX9ixKtNo/wqV/hQuHVhWHXlD/TZ2QAwSeNNLTezOamRenUlj0/X/e2vrGm823pXflrffbO7uVDx87NskMhzZPZGJ6MbMghYY2CpTQSw0wFUvoxpPTud+9BmNFoi9wlsJAsUstRoIzdFJUaYY2U1FeE5/GRzQUmoYIU8wtU6kEWxS0No0EnUZjeky/RrkYF0c/GlGl6tf9BehLEixJlSxxFlX+hsOEZwo0csms7Qd+ioOcGRRcQlEOMwsp4xN2CX1HNVNgB/niu4IeOmVIR4lxpZEu1KcTOVPWzlTsOhXDK7vqzcXXvH6Goy+DXOg0Q9D8cdEokxQTOo+KDoUBjnLmCONGuFspv2KGcXSBll0IwerLL0mnUQ8+1xvnzWrr2zKOEtknB6RGAnJCWuQ7OSNtwskNuSW/yG/vp3fn/fHuH1vXvOXMHnkG7+E/uLuhCg==</latexit>

Aside: What is the cost of SGD here?

• Update rule is

• Suppose we have K samples and .

• What is the time complexity of computing an iteration
of SGD?

• It’s really fast: O(1) — this makes SGD very attractive here

xt+1 = xt � 2↵(eTi xx
T ej � eTi Aej)(eie

T
j x+ eje

T
i x)

x 2 Rn

Demo

A Linear Rate for SGD? Why?

• Variance of the gradient estimator goes to zero over
time.

• What is the variance at a particular point x?

• At an optimal point, xxT = A, the variance is zero!

E

���r̃f(x)
���
2
�
=

4

K

X

(i,j)2samples

��(eTi xxT ej � eTi Aej)(eie
T
j x+ eje

T
i x)

��2

=
4

K

X

(i,j)2samples

(eTi xx
T ej � eTi Aej)

2((eTj x)
2 + (eTi x)

2)

The Role of Variance

• Hypothesis: if the variance becomes small when we get
close to the optimum, we converge at a linear rate.

• In fact, we can prove that we get a linear rate if for some
C

• Or more generally

E

���rf̃(x)
���
2
�
 C

���E
h
rf̃(x)

i���
2
= C krf(x)k2

Var
⇣
rf̃(x)

⌘
 C kx� x⇤k2

Can we make this happen for any objective?

• One way to do it:

• In expectation, this is the same since

• And if the samples are Lipschitz continuous with
parameter L,

rg̃(x) = rf̃(x)�rf̃(x⇤)

E [rg̃(x)] = rf(x)�rf(x⇤) = rf(x)� 0

krg̃(x)k2 = krf(x)�rf(x⇤)k2 L2 kx� x⇤k2

Does this mean we can always get a linear rate?

• Yes! ...for any strongly convex problem where we know
the solution.

• Doesn’t seem very useful.

• What if we can approximate the solution? For

• But now our gradients are biased — SGD converges to

rg̃(x) = rf̃(x)�rf̃(x̂)

x̂ ⇡ x⇤

x̂ not x⇤

Unbiased gradients with approximate solutions

• We can force the gradient to be unbiased by letting

• Using a full gradient as an anchor to lower the variance

• But what is the computational cost of doing this?
• Is it feasible to compute the full gradient in every setting?
• Is it worth it to get a linear rate?

rg̃(x) = rf̃(x)�rf̃(x̂) +E
h
rf̃(x̂)

i

Online and Offline Learning

Two Types of Settings for ML Problems

• Online learning
• The training examples arrive one-at-a-time as we are learning
• We don’t have access to all the training examples
• Not even necessarily a finite training set — new training

examples may be generated in real time in response to e.g.
changes in the environment

• Offline learning
• We have access to all the training examples upfront
• The objective is a finite sum over the given training set

Online Learning

• Have some distribution of training examples, and goal
is to

• But we don’t actually have an expression for the
distribution

• All we can do is draw samples from it

minimizew Ex̃⇠distribution [loss(w; x̃)]

x̃1, x̃2, x̃3, . . .

Advantages of Online Learning

• Online learning generally doesn’t overfit as much
• Why? The training distribution is the same as the test

distribution.

• Online learning easily handles new data from the
environment

• Systems benefit: we don’t need to materialize the entire
training set
• Great for scaling up to problems that don’t fit in memory

Disadvantages of Online Learning

• Can’t compute exact/full objectives and gradients
• Because we don’t even know distribution

• Difficult to evaluate convergence

• Generally don’t reuse training examples multiple times
• So don’t make efficient use of the cache for the training set

• Models sometimes catastrophically forget older
examples.

Limitations on Online Learning

• 1-D least squares regression: for some distribution μ over
R,

• Optimal solution is just the mean, regardless of what μ
is

minimizexEu⇠µ

1

2
(x� u)2

�

x⇤ = Eu⇠µ [u]

Limitations on Online Learning (continued)

• Suppose there were an online learning algorithm that
converged at a linear rate for this 1-D least squares problem.
Using t samples:

• But we know (from statistics) the lowest-variance estimator
for the mean of a distribution, given t samples, is just the
sample mean

• Contradiction. No online algorithm can be this good!

E
⇥
(xt � x

⇤)2
⇤
= O(�t)

ū =
1

t

tX

i=1

ut) Var (ū) =
1

t
Var (ut)

Limitations on Online Learning (continued)

• Conclusion: there’s no online learning algorithm that
converges at a linear rate for general convex problems.

• This doesn’t mean that online SGD never converges at a
linear rate
• We saw that the matrix completion example did

• But it does suggest that if we want to make SGD
converge at a linear rate, we need more information
than what we have in the online setting.

Aside: Online Learning in Research

• Online learning is an active area of research.

• Just from a search of the titles, there were 28 papers
mentioning “online” learning in this year’s ICML and 58
papers in this year’s NeurIPS.
• These numbers are increasing from last year!

• Particularly interesting to us because of the
computational benefits of being able to run online.

Offline Learning

• Offline or batch learning is the more traditional setting of
minimizing a finite sum of training losses

• Offline learning is often just defined as “not online learning”

• We have access to everything:
• The loss function l
• The training examples x
• The training labels y

minimizew
1

n

nX

i=1

l(w;xi, yi)

Benefits of Offline Learning

• Can compute exact/full objectives and gradients

• Consequence: it’s trivially possible to converge at a
linear rate
• Just use gradient descent

• Can we leverage this to make an SGD-like algorithm
fast?

Stochastic Variance-Reduced
Gradient (SVRG)

Recall: Unbiased low-variance samples
• From a few slides ago, we were looking at using samples of

the form

• These samples have reduced variance when is close to

• We asked when we could do this, and now we have an
answer:
• Only in the offline setting!

• Question: how do we use this in an algorithm?

rg̃(x) = rf̃(x)�rf̃(x̂) +E
h
rf̃(x̂)

i

x̂ x⇤

How much did we reduce the variance?

• If the gradient samples are L-Lipschitz continuous
• And we abuse notation to define

Var (rg̃(x)) = Var
⇣
rf̃(x)�rf̃(x̂) +E

h
rf̃(x̂)

i⌘

= Var
⇣
rf̃(x)�rf̃(x̂)

⌘

 E

���rf̃(x)�rf̃(x̂)
���
2
�

 L2 kx� x̂k2 .

Var(u) = E
⇥
ku�E[u]k2

⇤
<latexit sha1_base64="HUGHJcpLVcJsATE//jTQwSYmAYs=">AAACLXicbZDLSgMxFIYz9VbrrerSTbAIdWGZEUE3gngBlwq2CjNjyaSZNjRzITkRyjgv5MZXEcFFRdz6GmZqhXr5IfDznXPIOX+QCq7AtodWaWp6ZnauPF9ZWFxaXqmurrVUoiVlTZqIRN4ERDHBY9YEDoLdpJKRKBDsOuifFPXrOyYVT+IrGKTMj0g35iGnBAxqV0+9iEAvCLMWkXldb+ND/E3Ock+wEFzs3WONdya4q30Db3exJ3m3B367WrMb9kj4r3HGpobGumhXn71OQnXEYqCCKOU6dgp+RiRwKlhe8bRiKaF90mWusTGJmPKz0bU53jKkg8NEmhcDHtHJiYxESg2iwHQWG6vftQL+V3M1hAd+xuNUA4vp10ehFhgSXESHO1wyCmJgDKGSm10x7RFJKJiAKyYE5/fJf01rt+EYf7lXOzoex1FGG2gT1ZGD9tEROkcXqIkoekBPaIherUfrxXqz3r9aS9Z4Zh39kPXxCXaIp6M=</latexit><latexit sha1_base64="HUGHJcpLVcJsATE//jTQwSYmAYs=">AAACLXicbZDLSgMxFIYz9VbrrerSTbAIdWGZEUE3gngBlwq2CjNjyaSZNjRzITkRyjgv5MZXEcFFRdz6GmZqhXr5IfDznXPIOX+QCq7AtodWaWp6ZnauPF9ZWFxaXqmurrVUoiVlTZqIRN4ERDHBY9YEDoLdpJKRKBDsOuifFPXrOyYVT+IrGKTMj0g35iGnBAxqV0+9iEAvCLMWkXldb+ND/E3Ock+wEFzs3WONdya4q30Db3exJ3m3B367WrMb9kj4r3HGpobGumhXn71OQnXEYqCCKOU6dgp+RiRwKlhe8bRiKaF90mWusTGJmPKz0bU53jKkg8NEmhcDHtHJiYxESg2iwHQWG6vftQL+V3M1hAd+xuNUA4vp10ehFhgSXESHO1wyCmJgDKGSm10x7RFJKJiAKyYE5/fJf01rt+EYf7lXOzoex1FGG2gT1ZGD9tEROkcXqIkoekBPaIherUfrxXqz3r9aS9Z4Zh39kPXxCXaIp6M=</latexit><latexit sha1_base64="HUGHJcpLVcJsATE//jTQwSYmAYs=">AAACLXicbZDLSgMxFIYz9VbrrerSTbAIdWGZEUE3gngBlwq2CjNjyaSZNjRzITkRyjgv5MZXEcFFRdz6GmZqhXr5IfDznXPIOX+QCq7AtodWaWp6ZnauPF9ZWFxaXqmurrVUoiVlTZqIRN4ERDHBY9YEDoLdpJKRKBDsOuifFPXrOyYVT+IrGKTMj0g35iGnBAxqV0+9iEAvCLMWkXldb+ND/E3Ock+wEFzs3WONdya4q30Db3exJ3m3B367WrMb9kj4r3HGpobGumhXn71OQnXEYqCCKOU6dgp+RiRwKlhe8bRiKaF90mWusTGJmPKz0bU53jKkg8NEmhcDHtHJiYxESg2iwHQWG6vftQL+V3M1hAd+xuNUA4vp10ehFhgSXESHO1wyCmJgDKGSm10x7RFJKJiAKyYE5/fJf01rt+EYf7lXOzoex1FGG2gT1ZGD9tEROkcXqIkoekBPaIherUfrxXqz3r9aS9Z4Zh39kPXxCXaIp6M=</latexit><latexit sha1_base64="HUGHJcpLVcJsATE//jTQwSYmAYs=">AAACLXicbZDLSgMxFIYz9VbrrerSTbAIdWGZEUE3gngBlwq2CjNjyaSZNjRzITkRyjgv5MZXEcFFRdz6GmZqhXr5IfDznXPIOX+QCq7AtodWaWp6ZnauPF9ZWFxaXqmurrVUoiVlTZqIRN4ERDHBY9YEDoLdpJKRKBDsOuifFPXrOyYVT+IrGKTMj0g35iGnBAxqV0+9iEAvCLMWkXldb+ND/E3Ock+wEFzs3WONdya4q30Db3exJ3m3B367WrMb9kj4r3HGpobGumhXn71OQnXEYqCCKOU6dgp+RiRwKlhe8bRiKaF90mWusTGJmPKz0bU53jKkg8NEmhcDHtHJiYxESg2iwHQWG6vftQL+V3M1hAd+xuNUA4vp10ehFhgSXESHO1wyCmJgDKGSm10x7RFJKJiAKyYE5/fJf01rt+EYf7lXOzoex1FGG2gT1ZGD9tEROkcXqIkoekBPaIherUfrxXqz3r9aS9Z4Zh39kPXxCXaIp6M=</latexit>

Var (rg̃(x)) = Var
⇣
rf̃(x)�rf̃(x̂) +E

h
rf̃(x̂)

i⌘

= Var
⇣
rf̃(x)�rf̃(x̂)

⌘

 E

���rf̃(x)�rf̃(x̂)
���
2
�

 L2 kx� x̂k2 .

Var (rg̃(x)) = Var
⇣
rf̃(x)�rf̃(x̂) +E

h
rf̃(x̂)

i⌘

= Var
⇣
rf̃(x)�rf̃(x̂)

⌘

 E

���rf̃(x)�rf̃(x̂)
���
2
�

 L2 kx� x̂k2 .

Var (rg̃(x)) = Var
⇣
rf̃(x)�rf̃(x̂) +E

h
rf̃(x̂)

i⌘

= Var
⇣
rf̃(x)�rf̃(x̂)

⌘

 E

���rf̃(x)�rf̃(x̂)
���
2
�

 L2 kx� x̂k2 .

Is this enough for a linear rate for SGD?

• No, variance at the optimum is reduced, but still not
zero!

• Idea: what if we used a sequence of that approaches
the optimum?

• Then the variance would go to zero over time!
• Intuition: if the variance goes to zero at a linear rate, then SGD

should also converge at a linear rate.

Var (rg̃(x⇤)) L2 kx⇤ � x̂k2 .

x̂

Is this enough? (continued)

• If we have a sequence of that converges to the
optimum at a linear rate, then we can use it to reduce
the variance of SGD so that it converges to the optimum
at a linear rate.

• This also doesn’t seem useful.

• Critical insight: use the iterates of SGD as
• So, if SGD converges at a linear rate, then SGD will converge at

a linear rate
• Seems circular — but we can make it rigorous

x̂

x̂

How often to use full gradient samples?

• Can we use every iteration of SGD as an “anchor”
point?

• We could…but this would just be gradient descent.

• Instead, use a full gradient sample periodically
• every K iterations of SGD for some hyperparameter K
• sometimes called an epoch

rg̃(x) = rf̃(x)�rf̃(x) +E
h
rf̃(x)

i

= rf(x).

Stochastic Variance-Reduced Gradient (SVRG)

• Initialize x0,T arbitrarily
• Outer loop: for k = 1 to K

• Inner loop: for t = 1 to T
• Sample fk,t at random from training set losses

x̂k xk�1,T

ĝk rf(x̂k) = E
h
rf̃(x̂k)

i

xk,0 x̂k

xk,t xk,t�1 � ↵
⇣
rf̃k,t(xk,t�1)�rf̃k,t(x̂k) + ĝk

⌘

Computational Cost of SVRG

• Each inner loop runs for T iterations
• Has a computational cost of O(T)

• If we have n examples, the outer loop gradient
computation has a computational cost of O(n)

• Over K total outer loop iterations, total time is
O(Kn + KT)

Memory Burden of SVRG

• In addition to the copy of the model that needs to be
stored for vanilla SGD, we also need to store
• An additional copy of the model vector for the anchor point
• An additional vector to store its exact/full gradient

• If the model is of size d, we will need to store a total of
3d numbers
• Plus the training set, which is usually much larger

• Takeaway: no significant memory cost to run SVRG

x̂

Linear Rates for SVRG

Very Simple Proof that SVRG Converges

• Strategy: run the inner loop of SVRG long enough that
for some 𝛾 < 1

• Show that a fixed T suffices for every epoch k
• This is enough to show convergence at a linear rate. Why?

• You’ll see a tighter version of this proof in this week’s
paper.

E
h
kxk,T � x⇤k2

���xk,0

i
 � kxk,0 � x⇤k2 .

Analysis of an Inner Iterate of SVRG

• Starting with the iterate:

• Let’s simplify it a little by abusing notation to drop the k
subscripts

xk,t = xk,t�1 � ↵
⇣
rf̃k,t(xk,t�1)�rf̃k,t(x̂k) + ĝk

⌘

xt = xt�1 � ↵
⇣
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

⌘

Analysis (continued)

• Expected distance to the optimum:

• To proceed, need to bound the second order/variance
term

E [xt � x⇤|xt�1] = E

���xt�1 � x⇤ � ↵
⇣
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

⌘���
2
����xt�1

�

= kxt�1 � x⇤k2 � 2↵(xt�1 � x⇤)TE
h
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

���xt�1

i

+ ↵2E

���rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)
���
2
����xt�1

�

= kxt�1 � x⇤k2 � 2↵(xt�1 � x⇤)Trf(xt�1) + ↵2 krf(xt�1)k2

+ ↵2Var
⇣
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

���xt�1

⌘

E
h
kxt � x⇤k2

���xt�1

i

Analysis (continued)

• Important property: for constant c,

• We can use this to simplify the second order term:

Var (X + c) = Var (X)

Var
⇣
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

���xt�1

⌘

= Var
⇣
rf̃t(xt�1)�rf̃t(x̂)

���xt�1

⌘

 E

���rf̃t(xt�1)�rf̃t(x̂)
���
2
����xt�1

�

 L2 kxt�1 � x̂k2 2L2 kxt�1 � x⇤k2 + 2L2 kx̂� x⇤k2

Analysis (continued)

• Substituting this back, we get

• Now we can reduce the first part using strong
convexity/Lipschitz

E [xt � x⇤|xt�1] kxt�1 � x⇤k2 � 2↵(xt�1 � x⇤)Trf(xt�1) + ↵2 krf(xt�1)k2

+ ↵2
⇣
2L2 kxt�1 � x⇤k2 + 2L2 kx̂� x⇤k2

⌘
E
h
kxt � x⇤k2

���xt�1

i

E
h
kxt � x⇤k2

���xt�1

i
 kxt�1 � x⇤k2 � 2↵µ kxt�1 � x⇤k2 + ↵2L2 kxt�1 � x⇤k2

+ ↵2
⇣
2L2 kxt�1 � x⇤k2 + 2L2 kx̂� x⇤k2

⌘

= (1� 2↵µ+ 3↵2L2) kxt�1 � x⇤k2 + 2↵2L2 kx̂� x⇤k2

Analysis (continued)

• We can now take the full expectation, given the anchor
point

• Next, for simplicity, let

• Suppose we want to contract by a factor of e. As long as
e pt-1 > p0:

⇢t = E
h
kxt � x⇤k2

���x̂
i

⇢t (1� 2↵µ+ 3↵2L2)⇢t�1 + 2↵2L2⇢0

E
h
kxt � x⇤k2

���x̂
i
 (1� 2↵µ+ 3↵2L2)E

h
kxt�1 � x⇤k2

���x̂
i
+ 2↵2L2 kx̂� x⇤k2

⇢t (1� 2↵µ+ 3↵2L2)⇢t�1 + 2↵2L2e⇢t�1

Analysis (continued)

• Now we have

• Setting the step size such that

⇢t (1� 2↵µ+ 3↵2L2)⇢t�1 + 2↵2L2e⇢t�1

 (1� 2↵µ+ 5↵2L2e)⇢t�1

↵µ = 5↵2L2e

⇢t
✓
1� µ2

5L2e

◆
⇢t�1) ⇢t

✓
1� µ2

5L2e

◆t

⇢0 exp

✓
� µ2

5L2e
t

◆t

⇢0

Analysis (continued)

• Now, this was all contingent upon e pt-1 > p0.

• How many iterations do we need to get there?
• Need t such that

• It suffices to pick any

exp

✓
� µ2

5L2e
t

◆
 1

e

t � 5L2e

µ2

Analysis of Inner Loop Is Done!

• We’ve shown that if we run for iterations,

• In particular, this means that across outer loop
iterations,

t � 5L2e

µ2

E
h
kxt � x⇤k2

���x̂
i
 1

e
kx̂� x⇤k2

E
h
kx̂k+1 � x⇤k2

i
 1

e
E
h
kx̂k � x⇤k2

i

Outer Loop Analysis

• Applying this recursively,

• So, to get down to error ε we need k iterations, where

E
h
kx̂k � x⇤k2

i
 e�k kx̂0 � x⇤k2

k � log

kx̂0 � x⇤k2

✏

!

Bringing it Together

• Total number of stochastic gradient iterations needed is

• This is a linear rate!
• Although there’s a much tighter proof in the paper this week

with better dependence on the condition number.

tk � 5L2
e

µ2
log

kx̂0 � x

⇤k2

✏

!
= O

✓
log

✓
1

✏

◆◆

Demo

Issues with Variance Reduction

• Computational cost

• Overfitting

• Interaction with other techniques

• Choosing parameters
• Metaparameter optimization

Other Methods for Variance
Reduction

SAG

• Stochastic average gradient

• At each step, randomly update a single example’s
gradient estimate using the current iterate, like SGD

• But, use the sum of all gradient estimates to perform
an update

Systems Comparison: SAG vs SVRG

• SAG requires us to store a gradient sample for each
training example

• What is the memory cost of doing this, if we have n
training examples and our model has dimension d?

• Answer: it’s O(nd)

• Compare to SVRG which required O(3d)

Sample Orders

• “Standard” SGD chooses examples independently at
random at each step

• Instead: sample without replacement
• gradient errors across the dataset cancel out over an epoch

• Improves convergence rate in strongly convex case from
O(1/t) to O(1/t2)

• No computational overhead! So we usually do it

Many other variance reduction methods

• SAG
• SAGA
• SVRG
• SDCA – stochastic dual coordinate ascent
• Several methods in the distributed setting
• Etc.

Questions?

•Upcoming things
• Paper Presentation #3 on Monday — read paper before

class
• Paper Review #2 due on Monday.

