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Recall from Lecture 2

• Gradient descent
• Computationally slow to run
• Statistically converges at a linear rate

• Stochastic gradient descent (SGD)
• Fast iterations, no dependence on dataset size
• Statistically converges at a slower rate — or to a noise ball
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Can We Do Better?

• Is there an algorithm that has the computational 
structure of SGD, but still gets the fast linear rates of 
gradient descent?

• Intermediate question: can we find problems for which 
vanilla SGD already converges at a linear rate, rather 
than converging to a noise ball?
• If we find such a problem, we can understand why it 

happens.



Rank-1 Matrix Completion

• Suppose you have some rank-1 matrix

• Carelessly, you lost most of the entries of A
• You only have access to a sparse, randomly-chosen subset of 

the entries

• Goal: recover the original matrix A from the sparse 
samples.
• Applications include recommender systems, principal 

component analysis, etc.

A = xxT



Matrix Completion as Optimization

• Simplest thing: minimize squared error between model 
and samples.

• Is this convex?

• We can try to solve this with SGD: randomly choose (i, j) 
and run
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Aside: What is the cost of SGD here?

• Update rule is

• Suppose we have K samples and              .

• What is the time complexity of computing an iteration 
of SGD?

• It’s really fast: O(1) — this makes SGD very attractive here
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Demo



A Linear Rate for SGD? Why?

• Variance of the gradient estimator goes to zero over 
time.

• What is the variance at a particular point x?

• At an optimal point, xxT = A, the variance is zero! 
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The Role of Variance

• Hypothesis: if the variance becomes small when we get 
close to the optimum, we converge at a linear rate.

• In fact, we can prove that we get a linear rate if for some 
C

• Or more generally
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Can we make this happen for any objective?

• One way to do it:

• In expectation, this is the same since

• And if the samples are Lipschitz continuous with 
parameter L,

rg̃(x) = rf̃(x)�rf̃(x⇤)

E [rg̃(x)] = rf(x)�rf(x⇤) = rf(x)� 0

krg̃(x)k2 = krf(x)�rf(x⇤)k2  L2 kx� x⇤k2



Does this mean we can always get a linear rate?

• Yes! ...for any strongly convex problem where we know 
the solution.

• Doesn’t seem very useful.

• What if we can approximate the solution? For 

• But now our gradients are biased — SGD converges to 

rg̃(x) = rf̃(x)�rf̃(x̂)

x̂ ⇡ x⇤
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Unbiased gradients with approximate solutions

• We can force the gradient to be unbiased by letting

• Using a full gradient as an anchor to lower the variance

• But what is the computational cost of doing this?
• Is it feasible to compute the full gradient in every setting?
• Is it worth it to get a linear rate?
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Online and Offline Learning



Two Types of Settings for ML Problems

• Online learning
• The training examples arrive one-at-a-time as we are learning
• We don’t have access to all the training examples
• Not even necessarily a finite training set — new training 

examples may be generated in real time in response to e.g.
changes in the environment

• Offline learning
• We have access to all the training examples upfront
• The objective is a finite sum over the given training set



Online Learning

• Have some distribution of training examples, and goal 
is to

• But we don’t actually have an expression for the 
distribution

• All we can do is draw samples from it

minimizew Ex̃⇠distribution [loss(w; x̃)]

x̃1, x̃2, x̃3, . . .



Advantages of Online Learning

• Online learning generally doesn’t overfit as much
• Why? The training distribution is the same as the test 

distribution.

• Online learning easily handles new data from the 
environment

• Systems benefit: we don’t need to materialize the entire 
training set
• Great for scaling up to problems that don’t fit in memory



Disadvantages of Online Learning

• Can’t compute exact/full objectives and gradients
• Because we don’t even know distribution

• Difficult to evaluate convergence

• Generally don’t reuse training examples multiple times
• So don’t make efficient use of the cache for the training set

• Models sometimes catastrophically forget older 
examples.



Limitations on Online Learning

• 1-D least squares regression: for some distribution μ over 
R,

• Optimal solution is just the mean, regardless of what μ
is
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Limitations on Online Learning (continued)

• Suppose there were an online learning algorithm that 
converged at a linear rate for this 1-D least squares problem. 
Using t samples:

• But we know (from statistics) the lowest-variance estimator 
for the mean of a distribution, given t samples, is just the 
sample mean

• Contradiction. No online algorithm can be this good!
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Limitations on Online Learning (continued)

• Conclusion: there’s no online learning algorithm that 
converges at a linear rate for general convex problems.

• This doesn’t mean that online SGD never converges at a 
linear rate
• We saw that the matrix completion example did

• But it does suggest that if we want to make SGD 
converge at a linear rate, we need more information 
than what we have in the online setting.



Aside: Online Learning in Research

• Online learning is an active area of research.

• Just from a search of the titles, there were 28 papers 
mentioning “online” learning in this year’s ICML and 58 
papers in this year’s NeurIPS.
• These numbers are increasing from last year!

• Particularly interesting to us because of the 
computational benefits of being able to run online.



Offline Learning

• Offline or batch learning is the more traditional setting of 
minimizing a finite sum of training losses

• Offline learning is often just defined as “not online learning”

• We have access to everything:
• The loss function l
• The training examples x
• The training labels y

minimizew
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Benefits of Offline Learning

• Can compute exact/full objectives and gradients

• Consequence: it’s trivially possible to converge at a 
linear rate
• Just use gradient descent

• Can we leverage this to make an SGD-like algorithm 
fast?



Stochastic Variance-Reduced 
Gradient (SVRG)



Recall: Unbiased low-variance samples
• From a few slides ago, we were looking at using samples of 

the form

• These samples have reduced variance when      is close to  

• We asked when we could do this, and now we have an 
answer:
• Only in the offline setting!

• Question: how do we use this in an algorithm?

rg̃(x) = rf̃(x)�rf̃(x̂) +E
h
rf̃(x̂)

i

x̂ x⇤



How much did we reduce the variance?

• If the gradient samples are L-Lipschitz continuous
• And we abuse notation to define
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Is this enough for a linear rate for SGD?

• No, variance at the optimum is reduced, but still not 
zero!

• Idea: what if we used a sequence of      that approaches 
the optimum?

• Then the variance would go to zero over time! 
• Intuition: if the variance goes to zero at a linear rate, then SGD 

should also converge at a linear rate.

Var (rg̃(x⇤))  L2 kx⇤ � x̂k2 .

x̂



Is this enough? (continued)

• If we have a sequence of      that converges to the 
optimum at a linear rate, then we can use it to reduce 
the variance of SGD so that it converges to the optimum 
at a linear rate.

• This also doesn’t seem useful.

• Critical insight: use the iterates of SGD as
• So, if SGD converges at a linear rate, then SGD will converge at 

a linear rate
• Seems circular — but we can make it rigorous 
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How often to use full gradient samples?

• Can we use every iteration of SGD as an “anchor” 
point?

• We could…but this would just be gradient descent.

• Instead, use a full gradient sample periodically
• every K iterations of SGD for some hyperparameter K
• sometimes called an epoch

rg̃(x) = rf̃(x)�rf̃(x) +E
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Stochastic Variance-Reduced Gradient (SVRG)

• Initialize x0,T arbitrarily
• Outer loop: for k = 1 to K

• Inner loop: for t = 1 to T
• Sample fk,t at random from training set losses

x̂k  xk�1,T

ĝk  rf(x̂k) = E
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Computational Cost of SVRG

• Each inner loop runs for T iterations
• Has a computational cost of O(T)

• If we have n examples, the outer loop gradient 
computation has a computational cost of O(n)

• Over K total outer loop iterations, total time is 
O(Kn + KT)



Memory Burden of SVRG

• In addition to the copy of the model that needs to be 
stored for vanilla SGD, we also need to store
• An additional copy of the model vector for the anchor point
• An additional vector to store its exact/full gradient

• If the model is of size d, we will need to store a total of 
3d numbers
• Plus the training set, which is usually much larger

• Takeaway: no significant memory cost to run SVRG

x̂



Linear Rates for SVRG



Very Simple Proof that SVRG Converges

• Strategy: run the inner loop of SVRG long enough that 
for some 𝛾 < 1

• Show that a fixed T suffices for every epoch k
• This is enough to show convergence at a linear rate. Why?

• You’ll see a tighter version of this proof in this week’s 
paper.
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Analysis of an Inner Iterate of SVRG

• Starting with the iterate:

• Let’s simplify it a little by abusing notation to drop the k
subscripts
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Analysis (continued)

• Expected distance to the optimum:

• To proceed, need to bound the second order/variance 
term
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Analysis (continued)

• Important property: for constant c,

• We can use this to simplify the second order term: 

Var (X + c) = Var (X)

Var
⇣
rf̃t(xt�1)�rf̃t(x̂) +rf(x̂)

���xt�1

⌘

= Var
⇣
rf̃t(xt�1)�rf̃t(x̂)

���xt�1

⌘

 E

���rf̃t(xt�1)�rf̃t(x̂)
���
2
����xt�1

�

 L2 kxt�1 � x̂k2  2L2 kxt�1 � x⇤k2 + 2L2 kx̂� x⇤k2



Analysis (continued)

• Substituting this back, we get

• Now we can reduce the first part using strong 
convexity/Lipschitz
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Analysis (continued)

• We can now take the full expectation, given the anchor 
point

• Next, for simplicity, let

• Suppose we want to contract by a factor of e. As long as
e pt-1 > p0:
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Analysis (continued)

• Now we have

• Setting the step size such that
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Analysis (continued)

• Now, this was all contingent upon e pt-1 > p0.

• How many iterations do we need to get there?
• Need t such that

• It suffices to pick any
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Analysis of Inner Loop Is Done!

• We’ve shown that if we run for                    iterations,

• In particular, this means that across outer loop 
iterations,

t � 5L2e

µ2
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Outer Loop Analysis

• Applying this recursively,

• So, to get down to error ε we need k iterations, where
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Bringing it Together

• Total number of stochastic gradient iterations needed is

• This is a linear rate!
• Although there’s a much tighter proof in the paper this week 

with better dependence on the condition number.
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Demo



Issues with Variance Reduction

• Computational cost

• Overfitting

• Interaction with other techniques

• Choosing parameters
• Metaparameter optimization



Other Methods for Variance 
Reduction



SAG

• Stochastic average gradient

• At each step, randomly update a single example’s 
gradient estimate using the current iterate, like SGD

• But, use the sum of all gradient estimates to perform 
an update



Systems Comparison: SAG vs SVRG

• SAG requires us to store a gradient sample for each 
training example

• What is the memory cost of doing this, if we have n
training examples and our model has dimension d?

• Answer: it’s O(nd)

• Compare to SVRG which required O(3d)



Sample Orders

• “Standard” SGD chooses examples independently at
random at each step

• Instead: sample without replacement
• gradient errors across the dataset cancel out over an epoch

• Improves convergence rate in strongly convex case from 
O(1/t) to O(1/t2)

• No computational overhead! So we usually do it



Many other variance reduction methods

• SAG
• SAGA
• SVRG
• SDCA – stochastic dual coordinate ascent
• Several methods in the distributed setting
• Etc.



Questions?

•Upcoming things
• Paper Presentation #3 on Monday — read paper before 

class
• Paper Review #2 due on Monday.


