Getting SGD
Offt The Ground

Basic Techniques We Always Use

CS6787 Lecture 2 — Fall 2021

The hidden cost of SGD

« By switching to SGD, we eliminated the costly sum over the
dataset

1 mn
—w—a-— S Vf(w,
Wity =W — Q- — 2 fws, x;)

4

Wiy1 = W — onf(wt; %Lt)

» But the cost of computing the individual gradients
remains, and we'll need to run more steps

Using gradients naively is problematic

 Hardware efficiency perspective

* Need some way to compute gradients efficiently on
the underlying hardware

- Software engineering perspective

 |f we had to express the gradients by hand, this
requires human effort

» Also makes it difficult to change the objective, since
we'd need to re-derive the gradient

* Also makes us prone to bugs

How do we address these problems?

- Automatic differentiation

« Compute a gradient automatically — just need to specify the
objective

* Prime example: backpropagation
« Can also decompose the gradient computation into operators

that will run efficiently on hardware
@xnet

. . Cafte
 Machine learning frameworks

 Make it easy to express learning tasks in a high-level language

« Support for building scalable systems N r\
O PYTO rC h ensor

Why Automatic Difterentiation?

 There are other classical approaches we have to compute
derivatives.

« Symbolic differentiation

» Express the objective function as a mathematical expression, then
differentiate symbolically by applying the chain rule and other rules of
calculus.

« Numerical differentiation

PR (CR Ry (CRt DI (CR o B (s

for small €
h—0 2h 2€

Why might these be a bad approach for SGD?

How does automatic differentiation work?

 Main idea: transform the program that computes the
objective directly into a program that computes the
gradient.

* There are many ways of doing automatic differentiation
« Two broad classes: forward mode and reverse mode

« For most ML applications, we use backpropagation, a
particular flavor of reverse-mode automatic differentiation
 One specialized to compute gradients of nheural network objectives

Backpropagation

« Start with a ComPutatiqn graph that represents the
function to be differentiated

* Forward pass:. compute through the graph
nolrmally, as If we were computing the function
value

« Save all intermediate values used in the computation—
memory cost

- Backward pass: now proceed backwards through
the graph, computing gradients of the function
value w.r.t. intermediates

Backpropagation: A simple example

« Consider using backpropagation to differentiate the function
h(x) = exp(sin(cos(x)))

h'(x) = exp(sin(cos(x))) - cos(cos(x)) - (— sin(x))

* Notice that there's a bunch of redundant expressions here
« Backpropagation will compute, in order:

a1 = cos(x) g3 = exp(as)
as = sin(aq) g2 = g3 - cos(aq)

az = exp(az) f'(z) = g2 - (—sin(z))

Key thing to know: Automatic differentiation
can compute gradients...

« For any function that has differentiable
components

« To arbitrary precision

» Using a small constant factor of additional
compute compared with the cost to compute
the objective

Systems tradeotts of backpropagation

« Question: what are some aspects of backpropagation
that are beneficial from a systems/hardware
efficiency perspective?

« Question: what are some aspects of backpropagation
that may present an additional systems/hardware
efficiency cost?

» Relative to the cost of computing the function (but not the
gradient).

This solves part of the
problem...but there’s still a
software engineering challenge.

How do we build software that people can use to
reliably and robustly build, train, and deploy
machine learning solutions??

The answer: machine learning frameworks

« Goal: make ML easier
 From a software engineering perspective
 Make the computations more reliable, debuggable, and robust

« Goal: make ML scalable

* To large datasets running on distributed heterogeneous
hardware

« Goal: make ML accessible

« So that even people who aren’t ML systems experts can get
good performance

ML frameworks come in a few flavors

« General machine learning frameworks

« Goal: make a wide range of ML workloads and applications easy for
users

« General big data processing frameworks
« Focus: computing large-scale parallel operations quickly

* Typically has machine learning as a major, but not the only,
application

« Deep learning frameworks
» Focus: fast scalable backpropagation and inference
« Although typically supports other applications as well

How can we evaluate an ML framework?

 How popular is it?
 Use drives use — ML frameworks have a snowball effect

* Popular frameworks attract more development and eventually
more features

 Who is behind it?
« Major companies ensure long-term support

 What are its features?
« Often the least important consideration — unfortunately

Common Features of Machine
Learning F rameworks

What do ML frameworks support?

« Basic tensor operations
* Provides the low-level math behind all the algorithms
* Including support for running them on hardware such as GPUs

« Automatic differentiation
« Used to make it easy to run backprop on any model|

* Simple-to-use composable implementations of systems
techniques

* Including most of the techniques we will discuss in the remainder of
this course

Tensors

« CS way to think about it: a tensor is a multidimensional
array

« Math way to think about it: a tensor is a multilinear map
T:R" xR% x ... x R 5 R
T(x1,x2,...,%y,) is linear in each z;, with other inputs fixed.

e Here the number n is called the order of the tensor
« For example, a matrix is just a 2"9-order tensor

Examples of Tensors in Machine Learning

 The CIFAR10 dataset consists of 60000 32x32 color
Images
 We can write the training set as a tensor

TCIFARlO c RSQ X 32X 3%x60000

« Gradients for deep learning can also be tensors

 Example: fully-connected layer with 100 input and 100 output
neurons, and mini-batch size b=32

G e RlOOXlOOXSQ

Common Operations on Tensors

- Elementwise operations — looks like vector sum
« Example: Hadamard product

(AOB)i1,i2,...,in =A B

- Broadcast operations — expand along one or more
dimensions

- Example: 4 € R1** B € R1%5 then with broadcasting
(A+B)ij = Ai1+ B

« Extreme version of this is the tensor product

11,124...,1p 11,124...,1p

« Matrix-multiply-like operations — sum or reduce along a
dimension

e Also called tensor contraction

Broadcasting makes ML easy to write

 Here's how easy it is to write the loss and gradient for
logistic regression
 Doesn't even need to include a for-loop

def logreg loss(w, X, Y):
return np.log(l.0 + np.exp(-Y * (X @ w))).sum()

def logreg grad(w, X, Y):
return -X.T @ (Y / (1.0 + np.exp(Y * (X @ w))))

Tensors: a systems perspective

« Loads of data parallelism

e Tensors are in some sense the structural embodiment of data
parallelism

« Multiple dimensions 2 not always obvious which one best to
parallelize over

* Predictable linear memory access patterns
» Great for locality

- Many different ways to organize the computation
« Creates opportunities for frameworks to automatically optimize

General
Machine Learning
Frameworks

e 3 and

* NumPy

« Adds large multi-dimensional array and matrix types (tensors) to

python
« Supports basic numerical operations on tensors, on the CPU

« SciPy
* Builds on NumPy and adds tools for scientific computing

« Supports optimization, data structures, statistics, symbolic
computing, etc.

« Also has an interactive interface (Jupyter) and a neat plotting tool
(matplotlib)

- Great ecosystem for prototyping systems

Julia and MATLAB

« Julia

« Relatively new language (8 years old) with growing community
Natively supports numerical computing and all the tensor ops
Syntax is nicer than Python, and it's often faster

Has Flux, a library for machine learning that supports
backpropagation
But less support from the community and less library support

- MATLAB
* The decades-old standard for numerical computing
- Supports tensor computation, and some people use it for ML
« But has less attention from the community because it's proprietary

Home Installation Documentation -~ Examples

e Custom Search] X

scikit-learn

Machine Learning in Python

« scikit-learn
« A blroad, full-featured toolbox of machine learning and data analysis
tools

* In Python

« Features support for classification, regression, clustering,

dimensionality reduction: including SVM, logistic regression, k-
Means, PCA

A Theano

Theano

theano

 Machine learning library for python
« Created by the University of Montreal

« Supports tight integration with NumPy

« But also supports CPU and GPU integration
« Making it very fast for a lot of applications

- Development has ceased because of competition from
other libraries

General
Big Data Processing

Frameworks

The original: MapReduce/Hadoop

* Invented by Google to handle distributed processing

» People started to use it for distributed machine
learning

 And people still use it today

« But it's mostly been supplanted by other libraries
 And for good reason

» Hadoop does a lot of disk writes in order to be robust against
failure of individual machines — not necessary for machine
learning applications

Apache Spark

SparK

« Open-source cluster computing framework
« Built in Scala, and can also embed in Python

« Developed by Berkeley AMP lab

« Now spun off into a company: DataBricks

» The original pitch: 100x faster than Hadoop/MapReduce

* Architecture based on resilient distributed datasets (RDDs)
« Essentially a distributed fault-tolerant data-parallel array

Spark MLLib

- Scalable machine learning library built on top of Spark

* Supports most of the same algorithms scikit-learn supports

« Classification, regression, decision trees, clustering, topic modeling
* Not primarily a deep learning library

« Major benefit: interaction with other processing in Spark
« SparkSQL to handle database-like computation
 GraphX to handle graph-like computation

Apache Mahout

- Backend-independent programming environment for
machine learning

 Can support Spark as a backend
« But also supports basic MapReduce/Hadoop

* Focuses mostly on collaborative filtering, clustering, and
classification

« Similarly to MLLib and scikit-learn

* Also not very deep learning focused

Many more here

 _ots of very good frameworks for large-scale
parallel programming don’t end up becoming
popular

« Takeaway: important to release code people
can use easily

 And capture a group of users who can then help
develop the framework

Deep Learning Frameworks

Caffte

* Deep learning framework
* Developed by Berkeley Al research

- Declarative expressions for describing network architecture

 Fast — runs on CPUs and GPUs out of the box
* And supports a lot of optimization techniques

« Huge community of users both in academia and industry

Catte code example

149 lines (148 sloc) 1.88 KB

name: "CIFAR10_quick_test"

layer {

}

name: "data"
type: "Input”
top: "data"

input_param { shape: { dim: 1 dim: 3 dim:

layer {

name: “"conv1l"
type: "Convolution"
bottom: "data"
top: "conv1l"
param {
Ir mult: 1
}
param {
Ir mults 2
}

convolution_param {

-~

32 dim: 32 } }

TensorFlow

n

Q

« End-to-end deep learning system
* Developed by Google Brain

« API primarily in Python
« With support for other languages Tensor

« Architecture: build up a computation graph in Python

« Then the framework schedules it automatically on the available
resources

« Although recently TensorFlow has announced an eager version

» Super-popular, still very popular for deploying ML

TensorFlow code example

outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy with_logits(labels=y , logits=y))

train_step = tf.train.GradientDescentOptimizer(©.5).minimize(cross_entropy)

sess = tf.InteractiveSession()

tf.global variables_initializer().run()

Train

for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed dict={x: batch_xs, y_: batch_ys})

Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,

y_: mnist.test.labels}))

PYTHRCH

Python package that focuses on

« Tensor computation (like numpy) with strong GPU acceleration
 Deep Neural Networks built on a tape-based autograd system

Eager computation out-of-the-box

Uses a technigue called reverse-mode auto-differentiation

» Allows users to change network behavior arbitrarily with zero lag or overhead
* Fastest implementation of this method

PyTorch is the most popular framework for ML research

PyTorch example

def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log _interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[@]))

* Deep learning library from Apache.

 Scalable C++ backend

« Support for many frontend languages, including Python, Scalag,
C++, R, Perl...

« Focus on scalability to multiple GPUs
« Sometimes performs better than competing approaches.

MXNet Example

define network

net = nn.Sequential()

with net.name_scope():
net.add(nn.Dense(128, activation='relu'))
net.add(nn.Dense(64, activation='relu'))
net.add(nn.Dense(10))

(from MXNet MNIST
tutorial)

epoch = 10
Use Accuracy as the evaluation metric.
metric = mx.metric.Accuracy()
softmax_cross_entropy_loss = gluon. loss.SoftmaxCrossEntropyLoss()
for i in range(epoch):
Reset the train data iterator.
train_data.reset()
Loop over the train data iterator.
for batch in train_data:
Splits train data into multiple slices along batch_axis
and copy each slice into a context.

..and many other frameworks for ML

e Theano
e ONNX

e Jax

 New frameworks will continue to be developed!

ML Frameworks: Conclusion

 We use ML frameworks to both make ML code run more
efficiently and make it easier to express learning
procedures

* These frameworks are important to know about

because they give you the tools you can use to build
ML software.

* Most of you will be using an ML framework to do your
course project.

To get SGD off the ground, we don’t just use software.

Heve are some basic statistical techniques that we pretty
much always use...

Getting SGD
Offt The Ground

Basic Techniques We Always Use

CS6787 Lecture 2 — Fall 2021

S ALY

Mini-Batching

Gradient Descent vs. SGD

* Gradient descent: all examples at once

wt+1 — Wt — Oét E Vf wt,xz

» Stochastic gradient descent: one example at a time

W41 — Wt — othf(wt; LI?Z‘t)

* Is it really all or nothing? Can we do something
iIntermediate?

Mini-Batch Stochastic Gradient Descent

 An iIntermediate approach

where B; Is sampled uniformly from the set of all subsets
of {1, ..., N} of size b.

 The b parameter is the batch size
« Typically choose b << N.

« Also called mini-batch gradient descent

How does runtime cost of Mini-Batch compare

to SGD and Gradient Descent?

« Takes less time to compute each update than gradient
descent

 Only needs to sum up b gradients, rather than N

« But takes more time for each update than SGD
« So what's the benefit?

* It's more like gradient descent, so maybe it converges faster
than SGD?

Mini-Batch SGD Converges

« Start by breaking up the update rule into expected
update and noise

Wiyl — W = Wy — w* — a3 (Vh(w) — Vh(w™))
— at‘ B, Z (Vf(we; ;) — Vh(wy))

1€ By
e Second moment bound

E [[[we1 — w*[|*] = E [[Jw; - W= ay (Vh(wy) — VR(w")) |I7]

1
+ o E |— Z (V f(wg; @) — Vh(wy))
€B,

Mini-Batch SGD Converges (continued)

1
E B, Z (Vf(we; 25) — VR(wy))

1€ By

1
—E @Zm

1€ By

o7

Mini-Batch SGD Converges (continued)

« Because we sampled B uniformly at random, for i #

b b—1
E[ﬁzﬂj]:P(z'eB/\jeB):P(z'eB)P(jeB\ieB):N-N_1
b
27 . 7
E[ﬁi}—P(zEB)—N
* SO we can bound our square error term as
] -
1
E |l t,z (Vf(wiz) = Vhw)| | = orE ZZMJATA
i 1€ By il z 1 9=1

1 bb—1) 1 R

Mini-Batch SGD Converges (continued)

B & (VHwsa) = Vhu)| | =558 |5 = LS ATA, +ZHA "

1€ By 1 i z;éj

Mini—Batch SGD Converges (continued)

E Y (Vf(we ;) — Vh(wy))|| | = b(]]\\[f—_bl)E %Z A, H2

|By t|z€Bt

« Compared with SGD, squared error term decreased by
a factor of b

Mini-Batch SGD Converges (continued)

» Recall that SGD converged to a noise ball of size at most
. oVl
lim E [||lwp — w*|]?] <
T— o0 2 — o

* Since mini-batching decreases error term by a factor of
b, it will have

2

alM
lim E —w*|]?] <
T—oc lwr =] < (21 — ap?)b

« Noise ball smaller by the same factor!

Advantages of Mini-Batch (reprise)

« Takes less time to compute each update than gradient
descent
 Only needs to sum up b gradients, rather than N

« Converges to a smaller noise ball than stochastic
gradient descent

lim B [Jwr — w]

o aM
~ (20— ap?)b

How to choose the batch size?

« Mini-batching is not a free win

* Naively, compared with SGD, it takes b times as much effort to get a
b-times-as-accurate answer

- But we could have gotten a b-times-as-accurate answer by/ust
running SGD for b times as many steps with a step size of a/b

« But it still makes sense to run it for systems and statistical
reasons
« Mini-batching exposes more parallelism

* Mini-batching lets us estimate statistics about the full gradient more
accurately — we'll see this come up in Batch Normalization

« Another use case for hyperparameter optimization

Mini-Batch SGD is very widely used

* Including in basically all neural network training

* b =32 is a classical typical default value for batch size

* From “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” Bengio 2012.

 Nowadays larger batch sizes are more common
- b=64,b=128
« Some of this change is driven by systems considerations!

Opverfitting,
Generalization Error, and
Regularization

Minimizing Training Loss is Not our Real Goal

* Training loss looks like

hw) = 3 Fwiz)

 What we actually want to minimize is expected loss on hew
examples

« Drawn from some real-world distribution ¢

h(w) = Egg [f(w;)]

* Typically, we assume the training examples were drawn from this
distribution

Overtfitting

* Minimizing the training loss doesn't generally
minimize the expected loss on new examples

* They are two different objective functions after all

* Difference between the empirical loss on the training
set and the expected loss on new examples is called the
generalization error

* Even a model that has high accuracy on the training set
can have terrible performance on new examples

« Phenomenon is called overfitting

Demo

How to address overtfitting

 Many, many techniques to deal with overfitting
 Have varying computational costs

« But this is a systems course...so what can we do with
little or no extra computational cost?

 Notice from the demo that some loss functions do
better than others

« Can we modify our loss function to prevent overfitting?

Regularization

« Add an extra regularization term to the objective
function

« Most popular type: L2 regularization
1 N 1 N d
_ . 201,112 _ © o 2 2
hw) = 7 D flwsw) + ol = 5 3 fwsw) +0° 3k
« Also popular: L1 regularization

1 N 1 N d
hw) = + 3 fwiz) +llwlh = = 3 fawizs) +43
1=1 1=1 k=1

Benefits of Regularization

 Cheap to compute
 For SGD and L2 regularization, there's just an extra scaling

wir1 = (1 — 2040wy — oV f (we; x5,

« L2 regularization makes the objective strongly convex
* This makes it easier to get and prove bounds on convergence

« Helps with overfitting

Demo

How to choose the regularization parameter?

« One way is to use an independent validation set to
estimate the test error, and set the regularization
parameter manually so that it is high enough to avoid
overfitting

« This is what we saw Iin the demo

« But doing this naively can be computationally
expensive

 Need to re-run learning algorithm many times

* Yet another use case for hyperparameter optimization

More general forms of regularization

- Regularization is used more generally to
describe anything that helps prevent overfitting

* By biasing learning by making some models more
desirable a priori

 Many technigues that give throughput
Improvements also have a regularizing effect

« Sometimes: a win-win of better statistical and
hardware performance

Early Stopping

Asymptotically large training sets

« Setting 1. we have a distribution ¢ and we sample a very
large (asymptotically infinite) number of points from it, then
run stochastic gradient descent on that training set for only
N iterations.

« Can our algorithm in this setting overfit?

* No, because its training set is asymptotically equal to the true
distribution.

 Can we compute this efficiently?
* No, because its training set is asymptotically infinitely large

Consider a second setting

« Setting 1. we have a distribution ¢ and we sample a very
large (asymptotically infinite) number of points from it, then
ﬁmt stotq astic gradient descent on that training set for only

iterations.

« Setting 2: we have a distripbution ¢ and we sample N points
from If, then run stochastic gradient descent using each of
these points exactly once.

* What is the difference between the output of SGD in these
two settings?

« Asymptotically, there’s no difference!
* SO0 SGD in Setting 2 will also never overfit

Early Stopping

 Motivation: If we only use each training example once
for SGD, then we can't overfit.

* So if we only use each example a few times, we
probably won't overfit too much.

« Early stopping: just stop running SGD before it
converges.

Benefits of Early Stopping

 Cheap to compute
* Literally just does less work

* [t seems like the technigue was designhed to make
systems run faster

« Helps with overfitting

Questions?

 Upcoming things

« Please fill out the paper assignment survey tonight!

