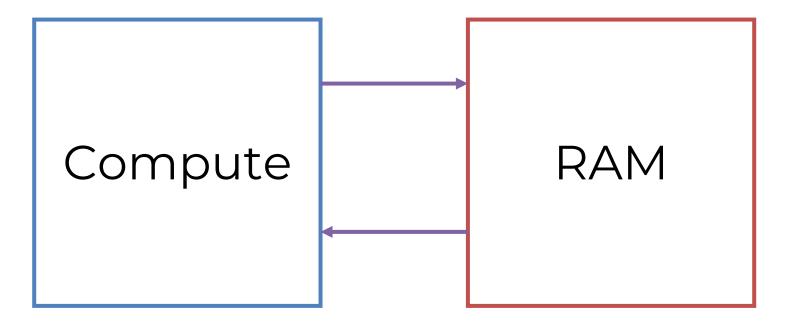
Low Precision Arithmetic

CS6787 Lecture 10 — Fall 2021

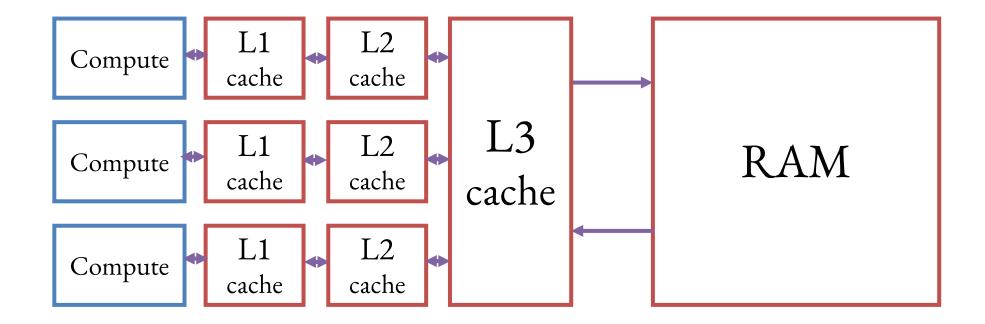
Memory as a Bottleneck

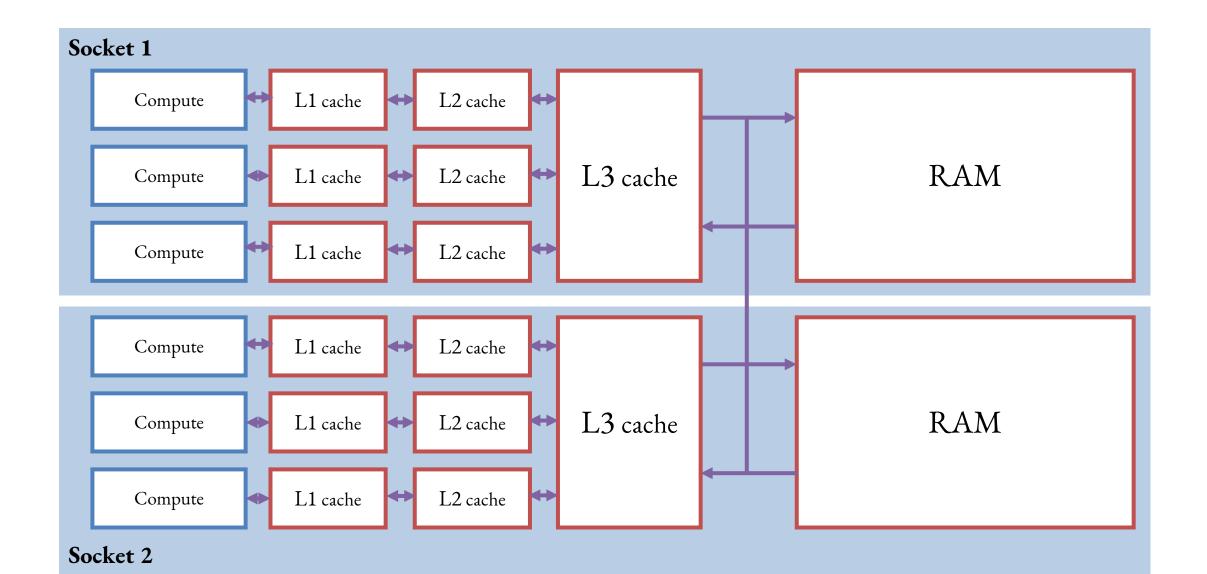
- So far, we've just been talking about **compute**
 - e.g. techniques to decrease the amount of compute by decreasing iterations
- But machine learning systems need to process huge amounts of data
- Need to store, update, and transmit this data
- As a result: **memory** is of critical importance
 - Many applications are memory-bound

Memory: The Simplified Picture

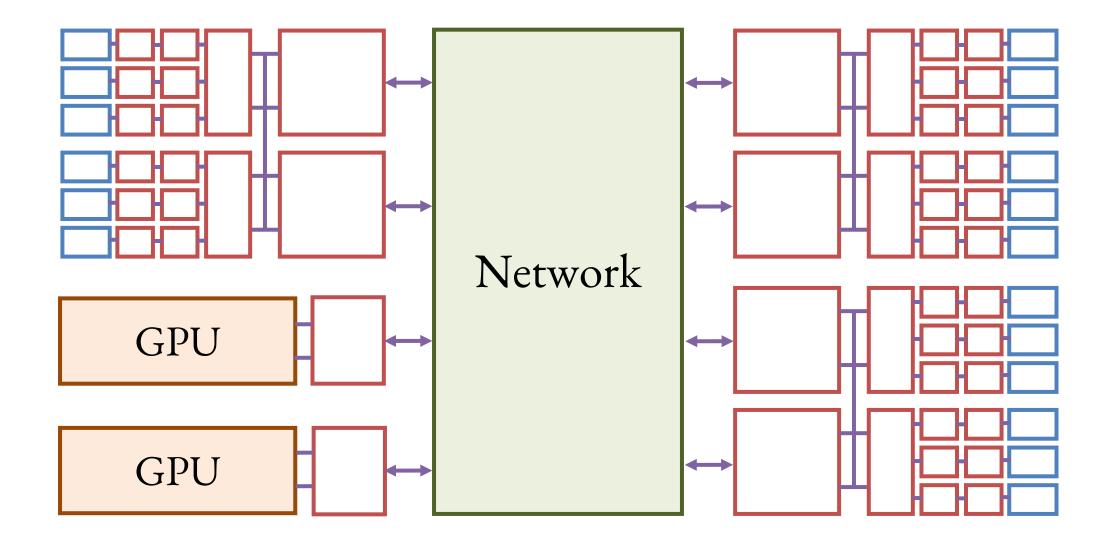


Memory: The Multicore Picture





Memory: The Distributed Picture



What can we learn from these pictures?

Many more memory boxes than compute boxes
And even more as we zoom out

• Memory has a **hierarchical structure**

Locality matters

- Some memory is closer and easier to access than others
- Also have standard concerns for CPU cache locality

What limits us?

Memory capacity

• How much data can we store locally in RAM and/or in cache?

Memory bandwidth

• How much data can we load from some source in a fixed amount of time?

Memory locality

• Roughly, how often is the data that we need stored nearby?

• Power

• How much energy is required to operate all of this memory?

One way to help: Low-Precision Arithmetic

Low-Precision Arithmetic

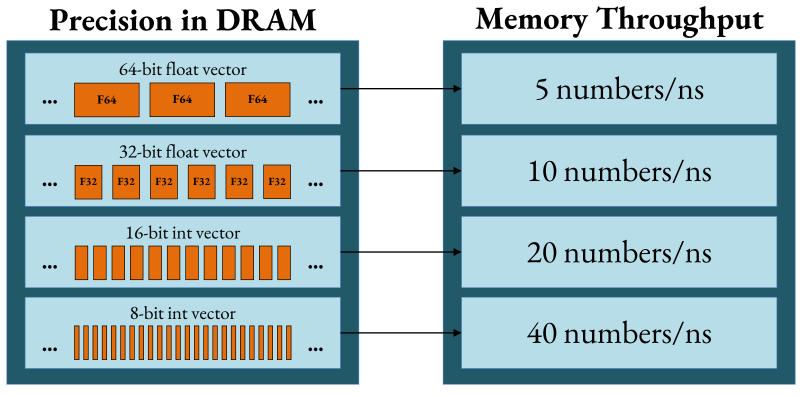
 Traditional ML systems use 32-bit or 64-bit floating point numbers

But do we actually need this much precision?

- Especially when we have inputs that come from noisy measurements
- Idea: instead use 8-bit or 16-bit numbers to compute
 - Can be either floating point or fixed point
 - On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

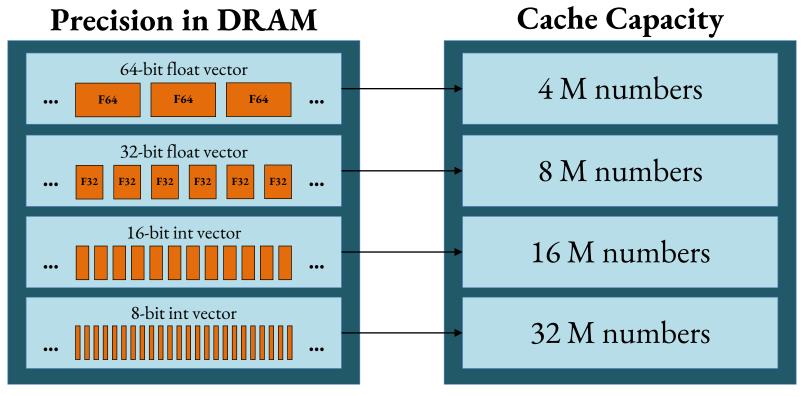
• Major benefit of low-precision: uses less memory bandwidth



(assuming ~40 GB/sec memory bandwidth)

Low Precision and Memory

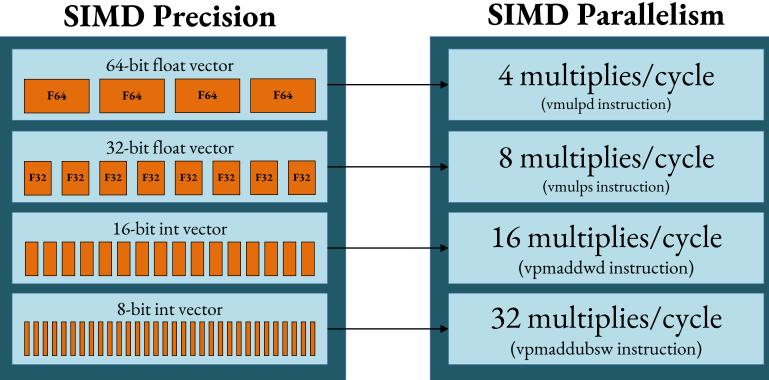
• Major benefit of low-precision: takes up less space



(assuming ~32 MB cache)

Low Precision and Parallelism

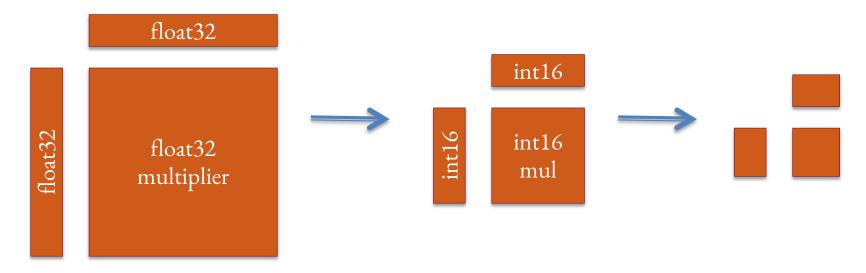
• Another benefit of low-precision: use **SIMD instructions** to get more parallelism on CPU



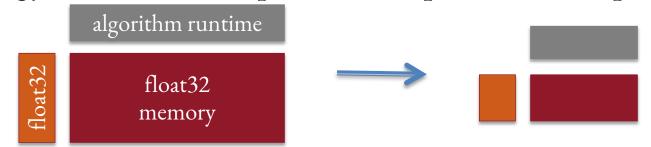
SIMD Precision

Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy



• Memory energy can also have quadratic dependence on precision



Effects of Low-Precision Computation

• Pros

- Fit more numbers (and therefore more training examples) in memory
- Store more numbers (and therefore larger models) in the cache
- Transmit more numbers per second
- Compute faster by extracting more parallelism
- Use less energy

• Cons

- Limits the numbers we can represent
- Introduces quantization error when we store a full-precision number in a low-precision representation

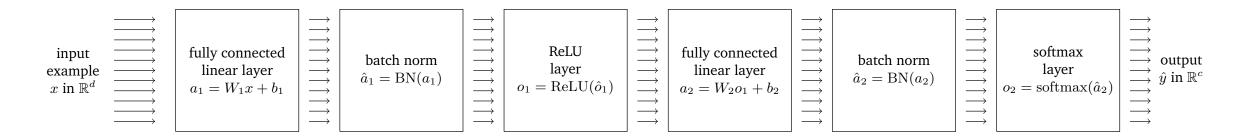
Numeric Formats in Machine Learning

How do we represent numbers as bit patterns on a computer?

A representative setup: DNN training

Many of the large-scale learning tasks we want to accelerate are deep learning tasks.

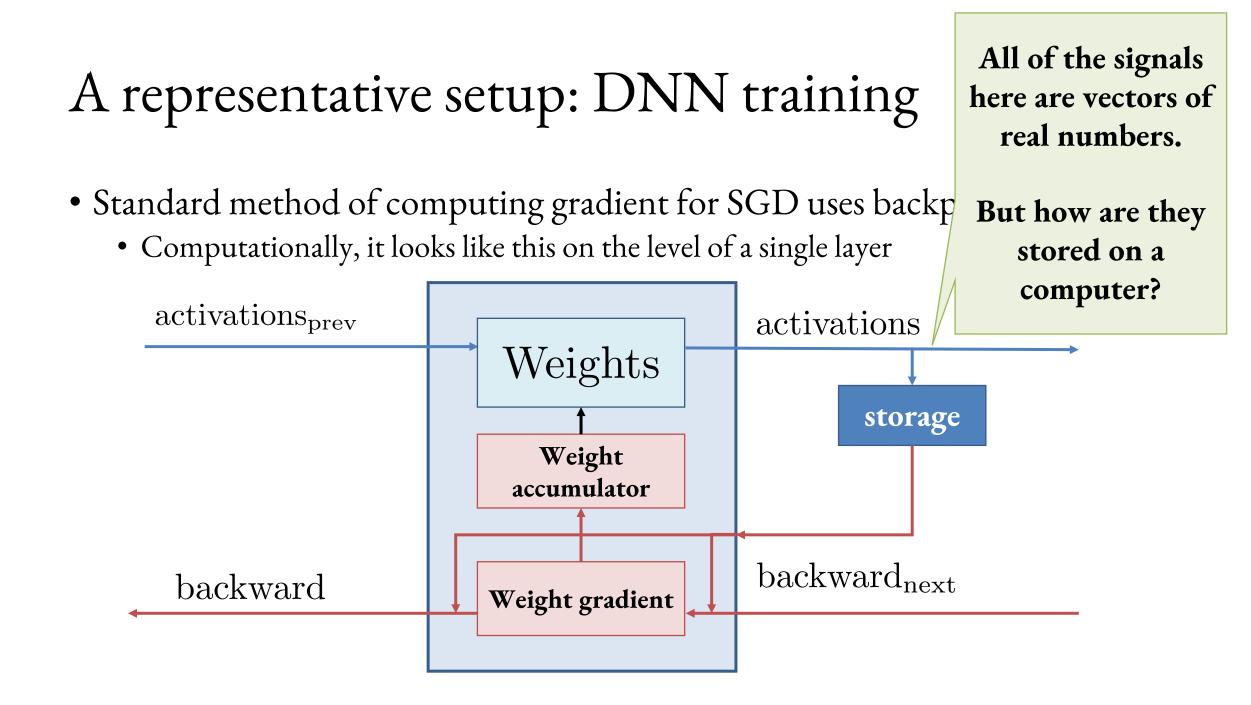
A deep neural network (DNN) looks like this:



Many layers connected to each other in series.

To train, we compute the loss gradient and run stochastic gradient descent:

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t)$$



The standard approach Single-precision floating point (FP32)

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

• 32-bit floating point numbers

8-bit exponent

31

sign

23-bit mantissa

9

8

7

6

5

3

4

2

0

• Usually, the represented value is

represented number = $(-1)^{\text{sign}} \cdot 2^{\text{exponent}-127} \cdot 1.b_{22}b_{21}b_{20} \dots b_0$

• Has a machine epsilon (measures relative error) of $\varepsilon_{\text{machine}} \approx 6.0 \times 10^{-8}$

An example

• Let's convert the number **6.5** to floating point.

$$6.5 = 13 \times 2^{-1} = (8 + 4 + 1) \times 2^{-1}$$
$$= 1101_b \times 2^{-1} = 1.101_b \times 2^2$$
$$= 1.101_b \times 2^{(129 - 127)}$$
$$= 1.101_b \times 2^{(1000001_b - 127)}$$

What is the machine epsilon?

Or, confusingly, twice this.

- Represents the relative error of the floating-point format
 - One half the distance between 1 and the next-largest floating point number
 - If there are **m** mantissa bits, $\varepsilon_{\text{machine}} \approx 2^{-m-1}$
 - Because the smallest representable number > 1 is $1 + 2^{-m}$

Relative error bound. If $x \in \mathbb{R}$ is any number in range of the format, and \hat{x} is the nearest number representable in the format, then

 $|\hat{x} - x| \le \varepsilon_{\text{machine}} \cdot |x|.$

Similarly, if $x, y \in \mathbb{R}$ are two floating-point numbers, \star is any primitive numerical operation (e.g. +, ×, etc.), and \otimes is the floating-point "version" of that op, then

$$|(x \circledast y) - (x \star y)| \le \varepsilon_{\text{machine}} \cdot |x \star y|.$$

A low-precision alternative FP16/Half-precision floating point

• 16-bit floating point numbers

1-bit	5-bit	10-bit
sign	exponent	significand

• Usually, the represented value is

 $x = (-1)^{\text{sign bit}} \cdot 2^{\text{exponent}-15} \cdot 1.\text{significand}_2$

Numeric properties of 16-bit floats

- A larger machine epsilon (larger rounding errors) of ε_{machine} = 4.9 × 10⁻⁴
 Compare 32-bit floats which had ε_{machine} ≈ 6.0 × 10⁻⁸
- A smaller overflow threshold (easier to overflow) at about 6.5×10^4 • Compare 32-bit floats where it's 3.4×10^{38}
- A larger underflow threshold (easier to underflow) at about 6.0 × 10⁻⁸.
 Compare 32-bit floats where it's 1.4 × 10⁻⁴⁵

With all these drawbacks, does anyone use this?

Half-precision floating point support

- Supported on most modern machine-learning-targeted GPUs
 - E.g. efficient implementation as far back as NVIDIA Pascal GPUs

Fascal Haluware Numerical Throughput					
GPU	DFMA (FP64 TFLOP/s)	FFMA (FP32 TFLOP/s)	HFMA2 (FP16 TFLOP/s)	DP4A (INT8 TIOP/s)	DP2A (INT16/8 TIOP/s)
GP100 (Tesla P100 NVLink)	5.3	10.6	21.2	NA	NA
GP102 (Tesla P40)	0.37	11.8	0.19	43.9	23.5
GP104 (Tesla P4)	0.17	8.9	0.09	21.8	10.9

Pascal Hardware Numerical Throughput

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiplyadd instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

• Good empirical results for deep learning

Micikevicius et al. "Mixed Precision Training." on arxiv, 2017.

Another common option Bfloat16 — "brain floating point"

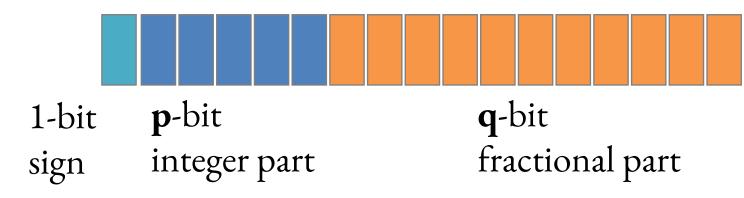
• Another 16-bit floating point number

1-bit	8-bit	7-bit	$\varepsilon_{\rm machine} = 3.9 \times 10^{-3}$
sign	exponent	significand	

- Main benefit: numeric range is now the same as single-precision float
 - Since it looks like a truncated 32-bit float
 - This is useful because ML applications are **more tolerant to quantization error** than they are to overflow

An alternative to low-precision floating point Fixed point numbers

• p + q + 1 -bit fixed point number



• The represented number is

 $x = (-1)^{\text{sign bit}} \text{ (integer part} + 2^{-q} \cdot \text{fractional part)}$ $= 2^{-q} \cdot \text{whole thing as signed integer}$

Arithmetic on fixed point numbers

Simple and efficient

- Can just use preexisting integer processing units
- Lower power than floating point operations with the same number of bits

Mostly exact

- Can always convert to a higher-precision representation to avoid overflow
- Can represent a much narrower range of numbers than float
- Has an absolute error bound, not relative error bound

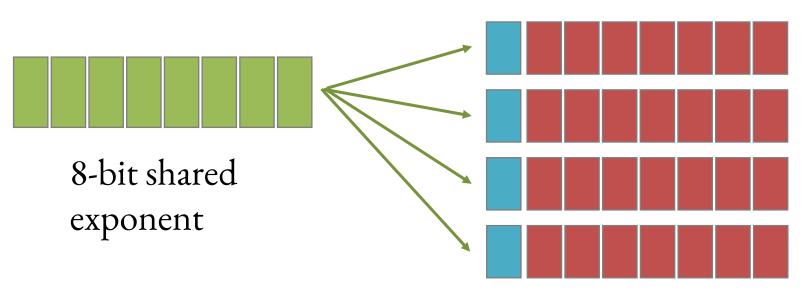
Support for fixed-point arithmetic

Anywhere integer arithmetic is supported

- CPUs, GPUs
- Although not all GPUs support 8-bit integer arithmetic
- And AVX2 does not have all the 8-bit arithmetic instructions we'd like
- Particularly effective on FPGAs and ASICs
 - Where floating point units are costly
- Sadly, very little support for other precisions
 4-bit operations would be particularly useful

A powerful hybrid approach Block Floating Point

- Motivation: when storing a vector of numbers, often these numbers all lie in the same range.
 - So they will have the same or similar exponent, if stored as floating point.
- Block floating point shares a single exponent among multiple numbers.



A more specialized approach Custom Quantization Points

- Even more generally, we can just have a list of 2^b numbers and say that these are the numbers a particular lowprecision string represents
 - We can think of the bit string as indexing a number in a dictionary
- Gives us total freedom as to range and scaling
 - But computation can be tricky

Some research into using this with hardware support

 "The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning" (Zhang et al 2017)

Low-precision formats in general

- These are some of the **most common formats used in ML**
 - ...but we're not limited to using only these formats!
- There are many other things we could try
 - For example, floating point numbers with different exponent/mantissa sizes
 - Fixed point numbers with nonstandard widths
- Problem: there's no hardware support for these other things yet, so it's hard to get a sense of how they would perform.
 - Need to **simulate**

Other Numerical Formats Used Rarely

• BigFloats

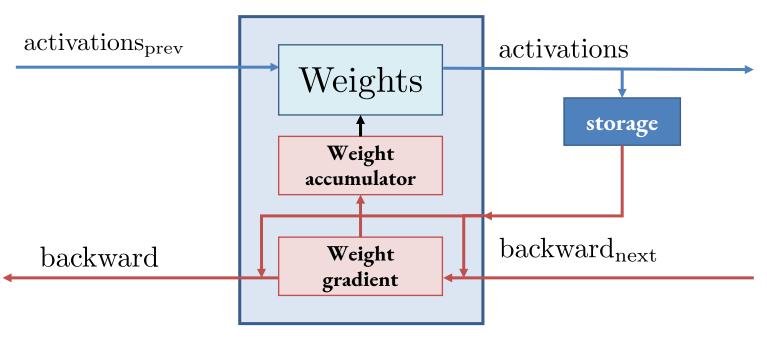
- Higher-precision floating-point numbers that are implemented in software
- Are sometimes necessary when you need very high precision, such as for very poorly conditioned problems
- Exact arithmetic with **rational numbers**
 - Lets you do arithmetic with no error
 - Numbers have variable length, because they require arbitrarily large integers
 - Can also support countable field extensions of the rational numbers
 - But these are very rarely used because of performance implications

Low-Precision SGD

Using low-precision arithmetic for training

How is precision used for training

- Recall our training diagram
 - Each of these signals forms a class of numbers
 - Generally, we assign a precision to each of the classes, and different classes can have different precisions



Number classes extended from "Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent," ISCA 2017:

- Dataset numbers
- Model/weight numbers
- Gradient numbers
- Communication numbers
- Activation numbers
- Backward pass numbers
- Weight accumulator
- Linear layer accumulator

Quantize classes independently

- Using low-precision for different number classes has different effects on throughput.
 - Quantizing the dataset numbers improves memory capacity and overall training example throughput
 - Quantizing the model numbers improves cache capacity and saves on compute
 - Quantizing the **gradient numbers** saves compute
 - Quantizing the communication numbers saves on expensive inter-worker memory bandwidth

Quantize classes independently

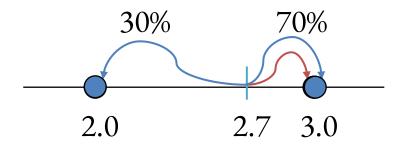
- Using low-precision for different number classes has different effects on statistical efficiency and accuracy.
 - Quantizing the dataset numbers means you're solving a different problem
 - Quantizing the model numbers adds noise to each gradient step, and often means you can't exactly represent the solution
 - Quantizing the gradient numbers can add errors to each gradient step
 - Quantizing the communication numbers can add errors which cause workers' local models to diverge, which slows down convergence

Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form

Using this, we can prove guarantees that SGD converges with a low precision model.

- Two approaches to rounding:
 - biased rounding round to nearest number
 - **unbiased rounding** round randomly: E[Q(x)] = x



• Imagine running SGD with a low-precision model with update rule

$$w_{t+1} = \tilde{Q} \left(w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right)$$

- Here, \mathbf{Q} is an unbiased quantization function
- In expectation, this is just gradient descent

$$\mathbf{E}[w_{t+1}|w_t] = \mathbf{E}\left[\tilde{Q}\left(w_t - \alpha_t \nabla f(w_t; x_t, y_t)\right) \middle| w_t\right]$$
$$= \mathbf{E}\left[w_t - \alpha_t \nabla f(w_t; x_t, y_t) \middle| w_t\right]$$
$$= w_t - \alpha_t \nabla f(w_t)$$

Implementing unbiased rounding

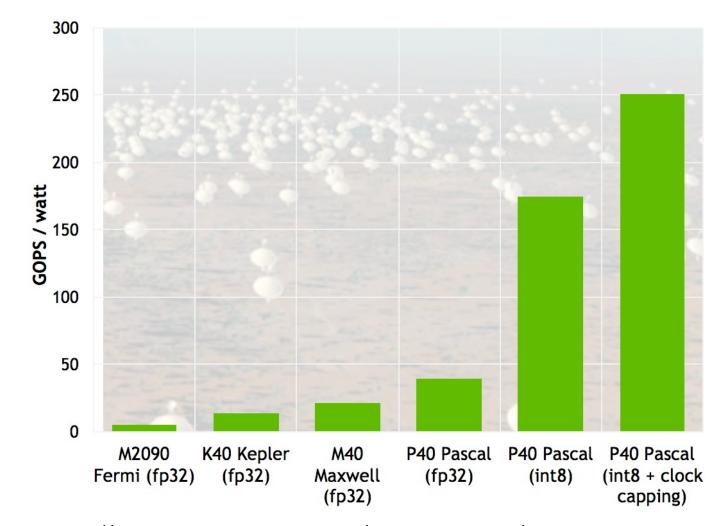
- To implement an unbiased to-integer quantizer: sample $u \sim \text{Unif}[0, 1]$, then set $Q(x) = \lfloor x + u \rfloor$
- Why is this unbiased?

$$\begin{aligned} \mathbf{E}[Q(x)] &= \lfloor x \rfloor \cdot \mathbf{P}(Q(x) = \lfloor x \rfloor) + (\lfloor x \rfloor + 1) \cdot \mathbf{P}(Q(x) = \lfloor x \rfloor + 1) \\ &= \lfloor x \rfloor + \mathbf{P}(Q(x) = \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbf{P}(\lfloor x + u \rfloor = \lfloor x \rfloor + 1) \\ &= \lfloor x \rfloor + \mathbf{P}(x + u \ge \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbf{P}(u \ge \lfloor x \rfloor + 1 - x) \\ &= \lfloor x \rfloor + 1 + (\lfloor x \rfloor + 1 - x) = x. \end{aligned}$$

Doing unbiased rounding efficiently

- We still need an efficient way to do unbiased rounding
- Pseudorandom number generation can be expensive
 - E.G. doing C++ rand or using Mersenne twister takes many clock cycles
- Empirically, we can use very cheap pseudorandom number generators
 - And still get good statistical results
 - For example, we can use XORSHIFT which is just a cyclic permutation

Benefits of Low-Precision Computation

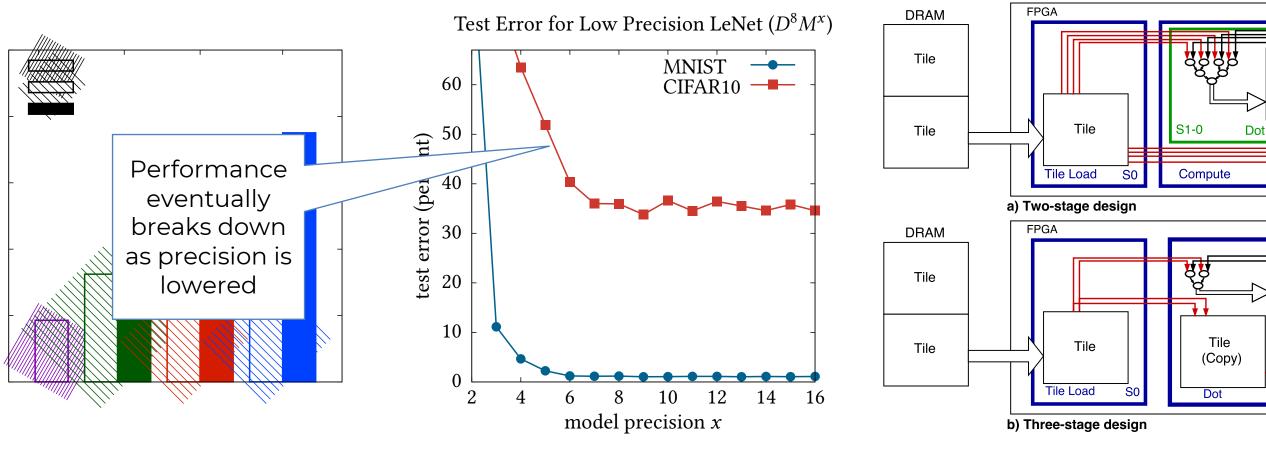


From https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

Drawbacks of low-precision

- The draw back of low-precision arithmetic is the **low precision**!
- Low-precision computation means we accumulate more rounding error in our computations
- These rounding errors can add up throughout the learning process, resulting in less accurate learned systems
- The trade-off of low-precision: throughput/memory vs. accuracy

Example: Low-Precision Neural Ne



(b) Test accuracies of low-precision SGD on LeNet neural network after 5000 passes, for various datasets.

Memory Locality and Scan Order

Memory Locality: Two Kinds

• Memory locality is needed for **good cache performance**

Temporal locality

• Frequency of reuse of the same data within a short time window

• Spatial locality

• Frequency of use of data nearby data that has recently been used

Where is there locality in stochastic gradient descent?

Problem: no dataset locality across iterations

- The training example at each iteration is chosen randomly
 - Called a random scan order
 - Impossible for the cache to predict what data will be needed

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t, y_t)$$

- Idea: process examples in the order in which they are stored in memory
 - Called a systematic scan order or sequential scan order
 - Does this improve the memory locality?

Random scan order vs. sequential scan order

- Much easier to prove theoretical results for random scan
- But sequential scan has better systems performance
- In practice, almost everyone uses sequential scan
 - There's no empirical evidence that it's statistically worse in most cases
 - Even though we can construct cases where using sequential scan does harm the convergence rate

Other scan orders

• Shuffle-once, then sequential scan

- Shuffle the data once, then systematically scan for the rest of execution
- Statistically very similar to random scan at the state

Random reshuffling

- Randomly shuffle on every pass through the data
- Gets better upper bounds for SGD
 - e.g. for convex, gets O(1/t) versus O(1/sqrt(t))
- Very commonly used with deep learning

Upcoming things
Project feedback coming soon!