
Low Precision Arithmetic
CS6787 Lecture 10 — Fall 2021

Memory as a Bottleneck

• So far, we’ve just been talking about compute
• e.g. techniques to decrease the amount of compute by decreasing

iterations

• But machine learning systems need to process huge
amounts of data

• Need to store, update, and transmit this data

• As a result: memory is of critical importance
• Many applications are memory-bound

Memory: The Simplified Picture

Compute RAM

Memory: The Multicore Picture

Compute

RAML3
cache

L2
cache

L2
cache

L2
cache

L1
cache

L1
cache

L1
cache

Compute

Compute

Socket 2

Socket 1

Compute

RAML3 cache

L2 cache

L2 cache

L2 cache

L1 cache

L1 cache

L1 cache

Compute

Compute

Compute

RAML3 cache

L2 cache

L2 cache

L2 cache

L1 cache

L1 cache

L1 cache

Compute

Compute

Memory: The Distributed Picture

Network
GPU

GPU

What can we learn from these pictures?

• Many more memory boxes than compute boxes
• And even more as we zoom out

• Memory has a hierarchical structure

• Locality matters
• Some memory is closer and easier to access than others
• Also have standard concerns for CPU cache locality

What limits us?

• Memory capacity
• How much data can we store locally in RAM and/or in cache?

• Memory bandwidth
• How much data can we load from some source in a fixed

amount of time?

• Memory locality
• Roughly, how often is the data that we need stored nearby?

• Power
• How much energy is required to operate all of this memory?

One way to help:
Low-Precision Arithmetic

Low-Precision Arithmetic

• Traditional ML systems use 32-bit or 64-bit floating
point numbers

• But do we actually need this much precision?
• Especially when we have inputs that come from noisy

measurements

• Idea: instead use 8-bit or 16-bit numbers to compute
• Can be either floating point or fixed point
• On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

• Major benefit of low-precision: uses less memory bandwidth

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Memory Throughput

10 numbers/ns

20 numbers/ns

40 numbers/ns

64-bit float vector
F64 F64 F64 5 numbers/ns

(assuming ~40 GB/sec memory bandwidth)

… …

… …

… …

… …

Low Precision and Memory

• Major benefit of low-precision: takes up less space

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Cache Capacity

8 M numbers

16 M numbers

32 M numbers

64-bit float vector
F64 F64 F64 4 M numbers

(assuming ~32 MB cache)

… …

… …

… …

… …

Low Precision and Parallelism

• Another benefit of low-precision: use SIMD instructions to get more
parallelism on CPU

SIMD Precision

32-bit float vector
F32 F32 F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

SIMD Parallelism

8 multiplies/cycle
(vmulps instruction)

16 multiplies/cycle
(vpmaddwd instruction)

32 multiplies/cycle
(vpmaddubsw instruction)

64-bit float vector
F64 F64 F64 F64

4 multiplies/cycle
(vmulpd instruction)

Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy

float32
multiplier

float32
flo

at
32 int16

mul

int16

in
t1

6

• Memory energy can also have quadratic dependence on precision

float32
memory

algorithm runtime

flo
at

32

Effects of Low-Precision Computation

• Pros
• Fit more numbers (and therefore more training examples) in

memory
• Store more numbers (and therefore larger models) in the

cache
• Transmit more numbers per second
• Compute faster by extracting more parallelism
• Use less energy

• Cons
• Limits the numbers we can represent
• Introduces quantization error when we store a full-precision

number in a low-precision representation

Numeric Formats in
Machine Learning
How do we represent numbers as bit patterns on a computer?

A representative setup: DNN training
Problem Set 4: Accelerating DNN Training and

Hyperparameter Optimization
CS4787 — Principles of Large-Scale Machine Learning Systems

Problem 1: Backprop and Batch Normalization. In this problem, we will examine how we can
differentiate deep neural networks that use batch normalization.

Consider a fully connected neural network for a multiclass classification problem with two layers
and batch normalization that is structured according to the following diagram.

fully connected
linear layer

a1 = W1x+ b1

batch norm
â1 = BN(a1)

ReLU
layer

o1 = ReLU(ô1)

fully connected
linear layer

a2 = W2o1 + b2

batch norm
â2 = BN(a2)

softmax
layer

o2 = softmax(â2)

input
example
x in Rd

output
ŷ in Rc

(Recall here that ReLU(u) = max(u, 0) and operates on vectors elementwise.) The dimensions of
the intermediate signals are x 2 Rd0 for the input (where d0 = d), a1, â1, o1 2 Rd1 for the first layer,
and a2, â2, o2 2 Rd2 for the last layer (where d2 = c, the number of output classes). The parameters
of the network are W1, b1, W2, b1, as well as the parameters of the batch normalization layers �1,
�1, �2, and �2 (not to be confused with momentum hyperparameters).

We want to run empirical risk minimization on this using a cross-entropy loss function L(ŷ, y), i.e.
the same loss function you used in Problem Set 1.

1(a). Find an expression for the gradient of the loss of this network with respect to each of the
parameters over a minibatch of size B. Remember to use minibatch statistics for the batch norm
layer!

1(b). What does the expression you found above in 1(a) imply about the parameters b1 and b2? Do
they have any effect on the learning process or the final predictions made by the model?

1(c). How does the addition of batch norm impact the overall cost of computing the gradient? Does
the batch norm layer dominate the cost of computation, or are other computations still dominant?

1

Many of the large-scale learning tasks we want to accelerate are deep learning tasks.

A deep neural network (DNN) looks like this:

Many layers connected to each other in series.

To train, we compute the loss gradient
and run stochastic gradient descent: wt+1 = wt � ↵trf(wt;xt)

<latexit sha1_base64="mbl11ylVEdzPlAV9LONsR5UsZj4=">AAACFHicbZBNSwMxEIazftb6VfXoJVgEpVh2q6AgQtGLRwWrQluW2TRrQ7PZJZm1lqU/wot/xYsHRbx68Oa/Ma09qPWFwMM7M0zmDRIpDLrupzMxOTU9M5uby88vLC4tF1ZWL02casZrLJaxvg7AcCkUr6FAya8TzSEKJL8KOieD+tUt10bE6gJ7CW9GcKNEKBigtfxCqetnWPL69Ih2faQ7tAEyaYPFhoJAAg23rH9I73zc9gtFt+wORcfBG0GRjHTmFz4arZilEVfIJBhT99wEmxloFEzyfr6RGp4A68ANr1tUEHHTzIZH9emmdVo0jLV9CunQ/TmRQWRMLwpsZwTYNn9rA/O/Wj3F8KCZCZWkyBX7XhSmkmJMBwnRltCcoexZAKaF/StlbdDA0OaYtyF4f08eh8tK2dstV873itXjURw5sk42yBbxyD6pklNyRmqEkXvySJ7Ji/PgPDmvztt364Qzmlkjv+S8fwGTK5yl</latexit>

A representative setup: DNN training

• Standard method of computing gradient for SGD uses backpropagation
• Computationally, it looks like this on the level of a single layer

Weights
<latexit sha1_base64="UG5mxhHPUCMADfi6SWL+L8DxtxA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieCpJFfRY9OKxgv2ANpTNdtou3WTD7kQosQf/ihcPinj1b3jz37hpc9DWBwOP92aYmRfEgmt03W+rsLK6tr5R3Cxtbe/s7tn7B00tE8WgwaSQqh1QDYJH0ECOAtqxAhoGAlrB+CbzWw+gNJfRPU5i8EM6jPiAM4pG6tlHXRmDoihVRENIW8CHI9TTnl12K+4MzjLxclImOeo9+6vblywJIUImqNYdz43RT6lCzgRMS91EQ0zZmA6hY2i2TPvp7P6pc2qUvjOQylSEzkz9PZHSUOtJGJjOkOJIL3qZ+J/XSXBw5ac8ihOEiM0XDRLhoHSyMJw+V8BQTAyhTHFzq8NGVFGGJrKSCcFbfHmZNKsV77xSvbso167zOIrkmJyQM+KRS1Ijt6ROGoSRR/JMXsmb9WS9WO/Wx7y1YOUzh+QPrM8fEmyWxw==</latexit>

activations
<latexit sha1_base64="oKsRCAwYnFMyA+PFiFuM/BUJM6k=">AAACA3icbVBNS8NAEN34WetX1JteFovgqSRV0GPRi8cK9gPaUDbbTbt0kw27k0IJBS/+FS8eFPHqn/Dmv3GT5qCtDwYe780wM8+PBdfgON/Wyura+sZmaau8vbO7t28fHLa0TBRlTSqFVB2faCZ4xJrAQbBOrBgJfcHa/vg289sTpjSX0QNMY+aFZBjxgFMCRurbxz0ZM0VAqoiELCUU+CS39KxvV5yqkwMvE7cgFVSg0be/egNJk5BFQAXRuus6MXgpUcCpYLNyL9EsJnRMhqxraLZQe2n+wwyfGWWAA6lMRYBz9fdESkKtp6FvOkMCI73oZeJ/XjeB4NpLeRQnwCI6XxQkAoPEWSB4wBWjIKaGEKq4uRXTEVEmCRNb2YTgLr68TFq1qntRrd1fVuo3RRwldIJO0Tly0RWqozvUQE1E0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH4V/mLk=</latexit>

activationsprev
<latexit sha1_base64="ms++MraOG1UAd0ZqFWDytEaDwtw=">AAACGXicbVBNS8MwGE79nPOr6tFLcAieRjsFPQ69eJzgPmArJc3SLSxNSpIORunf8OJf8eJBEY968t+Ydj24zQcCD8/zfuR9gphRpR3nx1pb39jc2q7sVHf39g8O7aPjjhKJxKSNBROyFyBFGOWkralmpBdLgqKAkW4wucv97pRIRQV/1LOYeBEacRpSjLSRfNsZiJhIpIXkKCIpwppOC0tlfrrombnTLPPtmlN3CsBV4pakBkq0fPtrMBQ4iQjXmCGl+q4Tay9FUlPMSFYdJIrECE/QiPQNzVcpLy0uy+C5UYYwFNI8rmGh/u1IUaTULApMZYT0WC17ufif1090eOOllMeJJhzPF4UJg1rAPCY4pJJgzWaGICyp+SvEYyRNPibMqgnBXT55lXQadfey3ni4qjVvyzgq4BScgQvggmvQBPegBdoAgyfwAt7Au/VsvVof1ue8dM0qe07AAqzvX2Plowo=</latexit>

backwardnext
<latexit sha1_base64="pwQr5bTKeUI8pGOBTjWNUR6/Z20=">AAACFnicbVC7SgNBFJ31GeMrammzGAQbw24UtAzaWEYwD0hCmJ3cJENmZ5aZu2pY9its/BUbC0Vsxc6/cfIoTOKBgcM593LmniAS3KDn/ThLyyura+uZjezm1vbObm5vv2pUrBlUmBJK1wNqQHAJFeQooB5poGEgoBYMrkd+7R604Ure4TCCVkh7knc5o2ildu60qSLQFJWWNIQkoGzwQHUnbSezhoRHTNN2Lu8VvDHcReJPSZ5MUW7nvpsdxeIQJDJBjWn4XoSthGrkTECabcYGIptJe9CwdBRlWsn4rNQ9tkrH7Sptn0R3rP7dSGhozDAM7GRIsW/mvZH4n9eIsXvZSriMYgTJJkHdWLio3FFHbodrYCiGllCmuf2ry/pUU4a2yawtwZ8/eZFUiwX/rFC8Pc+XrqZ1ZMghOSInxCcXpERuSJlUCCNP5IW8kXfn2Xl1PpzPyeiSM905IDNwvn4BmpahiA==</latexit>

storage

backward
<latexit sha1_base64="/1YGOJYwEch59UggBlJn3T3BvA4=">AAACAHicbVC7TsMwFHXKq5RXgYGBxaJCYqqSggRjBQtjkehDaqPKcW5aq04c2Q6oirLwKywMIMTKZ7DxNzhtBmg5kqWjc+7D93gxZ0rb9rdVWlldW98ob1a2tnd296r7Bx0lEkmhTQUXsucRBZxF0NZMc+jFEkjoceh6k5vc7z6AVExE93oagxuSUcQCRok20rB6NBAxSKKFjEgIqUfo5JFIPxtWa3bdngEvE6cgNVSgNax+DXxBkxAiTTlRqu/YsXZTIjWjHLLKIFEQm+lkBH1D823KTWcHZPjUKD4OhDQv0nim/u5ISajUNPRMZUj0WC16ufif1090cOWmLIoTDRGdLwoSjrXAeRrYZxKo5lNDCJXM/BXTMZGEapNZxYTgLJ68TDqNunNeb9xd1JrXRRxldIxO0Bly0CVqolvUQm1EUYae0St6s56sF+vd+piXlqyi5xD9gfX5A9h5lzU=</latexit> Weight gradient

Weight
accumulator

All of the signals
here are vectors of

real numbers.

But how are they
stored on a
computer?

The standard approach
Single-precision floating point (FP32)
• 32-bit floating point numbers

• Usually, the represented value is

• Has a machine epsilon (measures relative error) of

Lecture 23: Low-Precision Machine Learning

CS4787 — Principles of Large-Scale Machine Learning Systems

In this lecture, we’ll talk about the relatively recent trend of using number formats with a small number of
bits to reduce the computational cost of machine learning training. But first, we need to understand the
baseline: what do traditional machine learning applications do? Usually, we reason about machine learning
algorithms as if they were computing with infinite-precision real numbers, but of course this isn’t actually
the case. Traditional machine learning systems use 32-bit “single-precision” floating point numbers (or
occasionally 64-bit “double-precision” floating point numbers). How are these numbers represented?

012345678910111213141516171819202122232425262728293031

sign 8-bit exponent 23-bit mantissa

represented number = (�1)sign · 2exponent�127 · 1.b22b21b20 . . . b0
Note the implicit leading 1-bit before the mantissa. This is how floating point numbers are represented,
except for three special cases. The first special case occurs for the smallest representable numbers, when the
exponent = 0. In this case,

represented number = (�1)sign · 2�126 · 0.b22b21b20 . . . b0.

When the mantissa is also zero, this represents 0 (note the possibility of negative zero). When the mantissa
is non-zero, these are so-called denormal numbers. Denormal numbers can cause performance issues in
some code, since they require separate computational pathways. As a result, denormal numbers are often
flushed to zero—we just round them to zero when they occur. Typically this has minimal numerical impact
on machine learning code.

The second special case occurs wfor the largest exponent value, when exponent = 255 = 28 � 1. Here, there
are two possibilities. If the mantissa is zero, then the floating point value represents either positive infinity
(+1) or negative infinity (�1), depending on the sign bit. If the mantissa is nonzero, then the floating
point value represents something that is not a number, called a NaN value. This usually indicates some sort
of error. Here, the bits of the mantissa can contain a message that indicates how the error occurred.

Floating-point operations are usually equivalent to doing the following.

• Interpret the ordinary floating-point number inputs as real numbers.

• Perform the desired operation on those real numbers, producing a real-number result.

• Find the floating-point number that is closest to that result, and return that floating-point number.

In practice this is done with a circuit that is equivalent to this procedure, since obviously we can’t actually
compute with real numbers. This last rounding step has bounded relative error, such that for some constant
✏machine (called the machine epsilon)

|FloatingPointOp(x, y)� RealNumberOp(x, y)| |RealNumberOp(x, y)| · ✏machine.

1

Lecture 23: Low-Precision Machine Learning

CS4787 — Principles of Large-Scale Machine Learning Systems

In this lecture, we’ll talk about the relatively recent trend of using number formats with a small number of
bits to reduce the computational cost of machine learning training. But first, we need to understand the
baseline: what do traditional machine learning applications do? Usually, we reason about machine learning
algorithms as if they were computing with infinite-precision real numbers, but of course this isn’t actually
the case. Traditional machine learning systems use 32-bit “single-precision” floating point numbers (or
occasionally 64-bit “double-precision” floating point numbers). How are these numbers represented?

012345678910111213141516171819202122232425262728293031

sign 8-bit exponent 23-bit mantissa

represented number = (�1)sign · 2exponent�127 · 1.b22b21b20 . . . b0
Note the implicit leading 1-bit before the mantissa. This is how floating point numbers are represented,
except for three special cases. The first special case occurs for the smallest representable numbers, when the
exponent = 0. In this case,

represented number = (�1)sign · 2�126 · 0.b22b21b20 . . . b0.

When the mantissa is also zero, this represents 0 (note the possibility of negative zero). When the mantissa
is non-zero, these are so-called denormal numbers. Denormal numbers can cause performance issues in
some code, since they require separate computational pathways. As a result, denormal numbers are often
flushed to zero—we just round them to zero when they occur. Typically this has minimal numerical impact
on machine learning code.

The second special case occurs wfor the largest exponent value, when exponent = 255 = 28 � 1. Here, there
are two possibilities. If the mantissa is zero, then the floating point value represents either positive infinity
(+1) or negative infinity (�1), depending on the sign bit. If the mantissa is nonzero, then the floating
point value represents something that is not a number, called a NaN value. This usually indicates some sort
of error. Here, the bits of the mantissa can contain a message that indicates how the error occurred.

Floating-point operations are usually equivalent to doing the following.

• Interpret the ordinary floating-point number inputs as real numbers.

• Perform the desired operation on those real numbers, producing a real-number result.

• Find the floating-point number that is closest to that result, and return that floating-point number.

In practice this is done with a circuit that is equivalent to this procedure, since obviously we can’t actually
compute with real numbers. This last rounding step has bounded relative error, such that for some constant
✏machine (called the machine epsilon)

|FloatingPointOp(x, y)� RealNumberOp(x, y)| |RealNumberOp(x, y)| · ✏machine.

1

<latexit sha1_base64="sZG7E6IiM76U3MZ1O440igbYUZE=">AAACIHicbVC7TgMxEPTxJrwClDQWERIN0R3iVSJoKEEiASkXoj1nQyx8d5a9FxGd7lNo+BUaChCCDr4GJ6TgNZKl8cyu1zuRVtKS7797Y+MTk1PTM7OlufmFxaXy8krdppkRWBOpSs1lBBaVTLBGkhReaoMQRwovopvjgX/RQ2NlmpxTX2MzhutEdqQAclKrvB/2wKC2UrlbHhLeUh6D6LrnioKHoLVJb/le1echyRgtD/yrfOugaJUrftUfgv8lwYhU2AinrfJb2E5FFmNCQoG1jcDX1MzBkBQKi1KYWdQgbuAaG44m4IY18+GCBd9wSpt3UuNOQnyofu/IIba2H0euMgbq2t/eQPzPa2TUOWjmMtEZYSK+BnUyxSnlg7R4WxoUpPqOgDDS/ZWLLhgQ5DItuRCC3yv/JfXtarBb9c92KodHozhm2BpbZ5ssYPvskJ2wU1Zjgt2xB/bEnr1779F78V6/Sse8Uc8q+wHv4xPzfaNd</latexit>

"machine ⇡ 6.0⇥ 10�8

An example

• Let’s convert the number 6.5 to floating point.

6.5 = 13⇥ 2�1 = (8 + 4 + 1)⇥ 2�1

= 1101b ⇥ 2�1 = 1.101b ⇥ 22

= 1.101b ⇥ 2(129�127)

= 1.101b ⇥ 2(10000001b�127)

<latexit sha1_base64="IgM79vU5tUQ82nj2t8RuDF+nMM8=">AAAC03icfVFdS8MwFE3rd/2a+qYvwaFMxNLU+fUwGPqiPik4FbY50izTsLQNSSqOshfx1X/jn/HfmG0VXBUvXDicc5J7OTcQnCnteZ+WPTE5NT0zO+fMLywuLRdWVm9VnEhCayTmsbwPsKKcRbSmmeb0XkiKw4DTu6B7NtDvnqlULI5udE/QZogfI9ZhBGtDtQofh+4BdLYr0EH7sKFZSBX0H9I91IdOxSkdw11YNo12xkWn0YDbFQchD7WCnGRoN8f73/68kJaQf7KH/KOd/j8Wb1iGzZytQtFzRyT8DVAGiiCrq9aKNdNoxyQJaaQJx0rVkSd0M8VSM8KpmZ0oKjDp4kdaNzDCZnYzHcbbh1uGacNOLE1HGg7Zny9SHCrVCwPjDLF+UnltQP6l1RPdOW6mLBKJphEZDeokHOoYDm4F20xSonnPAEwkM7tC8oQlJtpcdOyn9jMTKtv6ZbT22BYCS9VlYhgdygf1G9z6Liq7J9flYvU0C3EWbIBNUAIIHIEqOAdXoAaItW5VrQvr0q7Zqf1qv42stpW9WQNjZb9/AWSxzlA=</latexit>

1 10000001 10100000000000000000000

<latexit sha1_base64="DtIbc74pj1B1YVx1vQzsPQo9hp8=">AAACSnicbZDNSgMxFIUztdpa/1pdugkWQRDKjBTUXdGNywr2B9pSMmlaQzMzIblTWoZ5CJ/Gre59AV/Dnbgx7czCaT0Q+Dj33uTmuFJwDbb9aeW28ts7heJuaW//4PCoXDlu6yBUlLVoIALVdYlmgvusBRwE60rFiOcK1nGn98t6Z8aU5oH/BAvJBh6Z+HzMKQFjDcuXfWBzAIgc7NgrLSHFrOJhuWrXEsab4KRQRamaw4pV6I8CGnrMByqI1j3HljCIiAJOBYtL/VAzSeiUTFjPoE88pgfR6lcxPjfOCI8DZY4PeOX+nYiIp/XCc02nR+BZr9eW5n+1Xgjjm0HEfRkC82ny0DgUGAK8jAiPuGIUxMIAoYqbXTF9JopQMEFmbhrNuNTp1vNk7cwWkig95TIumeic9aA2oX1Vc+q128d6tXGXhlhEp+gMXSAHXaMGekBN1EIUvaBX9IberQ/ry/q2fpLWnJXOnKCMcvlfB8CtYg==</latexit>

What is the machine epsilon?
• Represents the relative error of the floating-point format
• One half the distance between 1 and the next-largest floating point number
• If there are m mantissa bits,
• Because the smallest representable number > 1 is

<latexit sha1_base64="t1BJs4l0wGKQSyQyZdPpAuzAEIY=">AAACFnicbVBNTxsxEPVSykdKaaBHLhZRJS6JdiMqOCJ64UilhkTKptGsMyFW7F3Lno0SrfZXcOlf6aWHItRr1Rv/BufjAKFPsvT83szY8xKjpKMwfAw23my+3dre2a2823u//6F6cHjjstwKbIlMZbaTgEMlU2yRJIUdYxF0orCdjL/M/fYErZNZ+o1mBnsablM5lALIS/1qPZ6AReOk8rciJpxSoUGM/Liy5DEYY7Mpb34v6roelf1qLWyEC/DXJFqRGlvhul/9Fw8ykWtMSShwrhuFhnoFWJJCYVmJc4cGxBhusetpChpdr1isVfJPXhnwYWb9SYkv1OcdBWjnZjrxlRpo5Na9ufg/r5vT8LxXyNTkhKlYPjTMFaeMzzPiA2lRkJp5AsJK/1cuRmBBkE+y4kOI1ld+TW6ajehzI/x6Wru4XMWxw47YMTthETtjF+yKXbMWE+yO/WS/2X3wI/gVPAR/lqUbwarnI3uB4O8TUoGgCw==</latexit>

"machine ⇡ 2�m�1

<latexit sha1_base64="3Vm+184Fqbnaw8boSnYB4zpaW4g=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRZBEMtuqeix6MVjBfuB7VqyabYNTbJLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1RpVkk7804pr7AA8lCRrCx0oOHzlDlMT0Xk16x5JbdGdAy8TJSggz1XvGr249IIqg0hGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKrGg2k9nF0/QiVX6KIyULWnQTP09kWKh9VgEtlNgM9SL3lT8z+skJrzyUybjxFBJ5ovChCMToen7qM8UJYaPLcFEMXsrIkOsMDE2pIINwVt8eZk0K2XvouzeVUu16yyOPBzBMZyCB5dQg1uoQwMISHiGV3hztPPivDsf89ack80cwh84nz+vio+g</latexit>

1 + 2�m

<latexit sha1_base64="+xlv0MKhIiABM7MAdIs3JxC36l4=">AAAGEXiclVTBjtRGEDWTDAGTEEhyy6WV8YpFWazxSqvdC9IKckgOJGSTBaTxCNrtGru17W7T3Z4dy/FX5AtyTb6AG+KaL8g9H0K5PbOMFy60ZLlcXfW63usqJ6Xgxk6n/10ZffLp+Opn1677Nz7/4uaXt25/9cSoSjM4ZUoo/SyhBgSXcGq5FfCs1ECLRMDT5Oxht/90CdpwJX+3dQnzgmaSLzijFl3Pb4++iS2srANqfqbL+oGooG2cM1k0JyAwcAkEtFaaJKqSadi25KcFCVYk5pLEJwHhhlBZE1kVCWiCTk1lBkQtiM2BLJQuqN3DkJQEcU4tWbmUbk8C1WDsJlUDFm9AWor1d0Db+WhLP575hPxBehhyDx/8wNh4iUCl4QJJ9dU3BWU5qoLVxixVFgMxOPTjuf8bL7igWtR7hHdE9kh9wQVhiD1XZCEUMpfZvVJxuSnQ7CEDY6m+4FxqxHIKYQRo1FUQVYJ28pJdCLOQBN8HXZ7lBRi0wLLw7kYOdYHmqA4PffFifXV37vRiImlVDpXYxWtwIKS+i3p0n5uvj1JmndUr9PzWZBpO3SLvG9HamHjr9Rj76P84VQwlkJYJaswsmpZ23lBtORPQ+nFloKTsjGYwQ1NS1GLeuLZryQ560u6e8UHazrud0dDCmLpIMBI7ITeX9zrnh/ZmlV0czRsuy8qCZP1Bi0oQq0g3DCTlGpgVNRqUabxHRlhONWUWdR8gFVRnXN6PwsMDLudNBqoAq+shsXTJS7Omtuq5DUotqTZnvBw6M03LnLMVeiWcM1UU2BlNfIJD2BFKkuakxb0fAHXV8Ahdv7j+wnmN0ShM2/SvYb4xL9tZNG+2xnsSIaauBDTT8OgAinbzRnwfDzsDiv8Pi9yHUK69NuVw2RsldaEu7Zhxjbecuh5qLxWyHdDO9ufNDvZtrBQVPJNNEBfHNp9EMV6iEAnPusiu0iBmOs55Cuc8tfkmbLIfvHNiRLvjX+a9heMEcMctGTYmoGJ5olYYhGMKnTUND3Edte/qWKcGKIrD7mVROHLa93EuostT8L7xZD+MDsLpr/uT4wfrCbnmfet95+16kXfoHXs/eo+9U4+NmtFfo79H/4z/HL8avx6/6UNHV9Y5X3uDNf73LXpAEHE=</latexit>

Relative error bound. If x 2 R is any number in range of the format, and x̂ is
the nearest number representable in the format, then

|x̂� x| "machine · |x|.

Similarly, if x, y 2 R are two floating-point numbers, ? is any primitive numerical
operation (e.g. +, ⇥, etc.), and �? is the floating-point “version” of that op, then

|(x �? y)� (x ? y)| "machine · |x ? y|.

Or, confusingly,
twice this.

A low-precision alternative
FP16/Half-precision floating point
• 16-bit floating point numbers

• Usually, the represented value is

1-bit
sign

5-bit
exponent

10-bit
significand

x = (�1)sign bit · 2exponent�15 · 1.significand2

Numeric properties of 16-bit floats

• A larger machine epsilon (larger rounding errors) of
• Compare 32-bit floats which had

• A smaller overflow threshold (easier to overflow) at about
• Compare 32-bit floats where it’s

• A larger underflow threshold (easier to underflow) at about
• Compare 32-bit floats where it’s

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.

0123456789101112131415

sign 5-bit exp 10-bit mantissa

In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 104

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?

2

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.

0123456789101112131415

sign 5-bit exp 10-bit mantissa

In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 104

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?

2

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.

0123456789101112131415

sign 5-bit exp 10-bit mantissa

In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 104

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?

2

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.

0123456789101112131415

sign 5-bit exp 10-bit mantissa

In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 104

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?

2

With all these drawbacks, does anyone use this?

<latexit sha1_base64="EjQBfIl76PwqkEIs/IoZaGzcD48=">AAAELXicbVPLbtQwFHU7PMrwamHJJmKmEhuipGrVsqg0AhZsEKWiD2kcKsfxJNbYcbCd6YysfAefwRewhS9ggYRYIfEb3CRTtTPlSpFPjs992o4LwY0Ngp8rq50bN2/dXrvTvXvv/oOH6xuPjo0qNWVHVAmlT2NimOA5O7LcCnZaaEZkLNhJPH5V759MmDZc5R/srGCRJGnOR5wSC9TZeognRLPCcAF/Dls2tU4SmkG4qvL2vW3/hYctl8x4YfDRPd+uztZ7gR805l0H4Rz00NwOzjZW/+BE0VKy3FJBjBmGQWEjR7TlVLCqi0vDCkLHJGVDgDmBbJFrequ8TWASb6Q0fLn1GvaqhyPSmJmMQSmJzczyXk3+b29Y2tFe5HhelJbltE00KoVnlVcPyku4ZtSKGQBCNYdaPZoRTaiFcS5EkkSnPN8P/d0dnkcuZUoyq2eLjSUTXph5a9O2t4VSC6LNmBeLZKpJkXE6BTZn51RJSfLE4cPK4bqhOHaHFey9ZjBXzd4C9a5gmlilHQYgTeXaZdHfmE/VMIza425qcb0QYupSMBf4eztMVhcrxO9CsjEjcLcs9L4YShlL9EU5PG9BQRpp4zagXMMpJ7gRLhVyVVANtyK32fU8rBQRPM1dH8uBzXohhkMUIuZprawr7WOqccYTds4Tm13Ielv9SxIU1WZ3ue8rcZoBNOkmFC4mg4llsZqCiEL1NQr8XbC96rKOuWsfhtLEbseibAZT6cK7CJdfwXVwvOWHO37wfrs3eDl/IWvoCXqKnqEQ7aIBeoMO0BGi6DP6ir6h750vnR+dX53frXR1Ze7zGC1Y5+8/OjNqyg==</latexit>

"machine = 4.9⇥ 10�4
<latexit sha1_base64="sZG7E6IiM76U3MZ1O440igbYUZE=">AAACIHicbVC7TgMxEPTxJrwClDQWERIN0R3iVSJoKEEiASkXoj1nQyx8d5a9FxGd7lNo+BUaChCCDr4GJ6TgNZKl8cyu1zuRVtKS7797Y+MTk1PTM7OlufmFxaXy8krdppkRWBOpSs1lBBaVTLBGkhReaoMQRwovopvjgX/RQ2NlmpxTX2MzhutEdqQAclKrvB/2wKC2UrlbHhLeUh6D6LrnioKHoLVJb/le1echyRgtD/yrfOugaJUrftUfgv8lwYhU2AinrfJb2E5FFmNCQoG1jcDX1MzBkBQKi1KYWdQgbuAaG44m4IY18+GCBd9wSpt3UuNOQnyofu/IIba2H0euMgbq2t/eQPzPa2TUOWjmMtEZYSK+BnUyxSnlg7R4WxoUpPqOgDDS/ZWLLhgQ5DItuRCC3yv/JfXtarBb9c92KodHozhm2BpbZ5ssYPvskJ2wU1Zjgt2xB/bEnr1779F78V6/Sse8Uc8q+wHv4xPzfaNd</latexit>

"machine ⇡ 6.0⇥ 10�8

Half-precision floating point support

• Supported on most modern machine-learning-targeted GPUs
• E.g. efficient implementation as far back as NVIDIA Pascal GPUs

• Good empirical results for deep learning
Micikevicius et al. “Mixed Precision Training.” on arxiv, 2017.

Another common option
Bfloat16 — “brain floating point”
• Another 16-bit floating point number

• Main benefit: numeric range is now the same as single-precision float
• Since it looks like a truncated 32-bit float
• This is useful because ML applications are more tolerant to quantization error

than they are to overflow

1-bit
sign

8-bit
exponent

7-bit
significand

<latexit sha1_base64="A/QWSkyCCs9FNqZ8jfACR1d7TnA=">AAAELXicbVPLbtQwFHU7PMrwamHJxmKmEhtGSUvVsqg0AhZsEKWiD2kSKsfxJNbEdrCd6YysfAefwRewhS9ggYRYIfEb3CRTtRm4UuST43OftqM848Z63o+V1c616zdurt3q3r5z99799Y0Hx0YVmrIjqjKlTyNiWMYlO7LcZuw014yIKGMn0eRltX8yZdpwJd/bec5CQRLJx5wSC9TZuh9MiWa54Rn8ucCymXWC0BTClSXex9uD5ziwXDCDfe+De7pdnq33vIFXG/4X+AvQQws7ONtY/R3EihaCSUszYszI93IbOqItpxkru0FhWE7ohCRsBFASyBa6urcSbwIT47HS8EmLa/aqhyPCmLmIQCmITc3yXkX+b29U2PFe6LjMC8skbRKNiwxbhatB4ZhrRm02B0Co5lArpinRhFoYZyuSIDrhct8f7O5wGbqEKcGsnrcbi6c8N4vWZk1vrVJzos2E520y0SRPOZ0BK9k5VUIQGbvgsHRB1VAUucMS9l4xmKtmb4B6mzNNrNIuACBM6Zql7W/Mx3Lkh81x17W4ng8xdZEx5w32dpgoL1aI34VkE0bgblnovR1KGUv0RTlcNiAntbR2G1Ku4ZTjoBYuFXJVUI62QrfZxThQimQ8ka4fiKFNe34Ah5hlEU8qZVVpP6A6SHnMznls0wtZb6t/SYKi3Owu930lTj2AOt2UwsVkMLE0UjMQUai+Qt5gF2yvvKxj4dqHodSxm7Eom8JUuvAu/OVX8C843hr4OwPv3bPe8MXihayhR+gxeoJ8tIuG6DU6QEeIok/oC/qKvnU+d753fnZ+NdLVlYXPQ9Syzp+/MvNqyA==</latexit>

"machine = 3.9⇥ 10�3

An alternative to low-precision floating point
Fixed point numbers
• p + q + 1 –bit fixed point number

• The represented number is

p-bit
integer part

q-bit
fractional part

1-bit
sign

x = (�1)sign bit
�
integer part + 2�q · fractional part

�

= 2�q · whole thing as signed integer

Arithmetic on fixed point numbers
• Simple and efficient

• Can just use preexisting integer processing units
• Lower power than floating point operations with the same number

of bits

• Mostly exact
• Can always convert to a higher-precision representation to avoid

overflow

• Can represent a much narrower range of numbers than
float

• Has an absolute error bound, not relative error bound

Support for fixed-point arithmetic

• Anywhere integer arithmetic is supported
• CPUs, GPUs
• Although not all GPUs support 8-bit integer arithmetic
• And AVX2 does not have all the 8-bit arithmetic instructions

we’d like

• Particularly effective on FPGAs and ASICs
• Where floating point units are costly

• Sadly, very little support for other precisions
• 4-bit operations would be particularly useful

A powerful hybrid approach
Block Floating Point
• Motivation: when storing a vector of numbers, often these numbers all lie

in the same range.
• So they will have the same or similar exponent, if stored as floating point.

• Block floating point shares a single exponent among multiple numbers.

8-bit shared
exponent

A more specialized approach
Custom Quantization Points
• Even more generally, we can just have a list of 2b numbers

and say that these are the numbers a particular low-
precision string represents
• We can think of the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
• But computation can be tricky

• Some research into using this with hardware support
• “The ZipML Framework for Training Models with End-to-End Low

Precision: The Cans, the Cannots, and a Little Bit of Deep Learning”
(Zhang et al 2017)

Low-precision formats in general

• These are some of the most common formats used in ML
• …but we’re not limited to using only these formats!

• There are many other things we could try
• For example, floating point numbers with different

exponent/mantissa sizes
• Fixed point numbers with nonstandard widths

• Problem: there’s no hardware support for these other
things yet, so it’s hard to get a sense of how they would
perform.
• Need to simulate

Other Numerical Formats Used Rarely

• BigFloats
• Higher-precision floating-point numbers that are implemented in

software
• Are sometimes necessary when you need very high precision, such

as for very poorly conditioned problems

• Exact arithmetic with rational numbers
• Lets you do arithmetic with no error
• Numbers have variable length, because they require arbitrarily large

integers
• Can also support countable field extensions of the rational

numbers
• But these are very rarely used because of performance implications

Low-Precision SGD
Using low-precision arithmetic for training

How is precision used for training

• Recall our training diagram
• Each of these signals forms a class of numbers
• Generally, we assign a precision to each of the classes,

and different classes can have different precisions

Weights
<latexit sha1_base64="UG5mxhHPUCMADfi6SWL+L8DxtxA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieCpJFfRY9OKxgv2ANpTNdtou3WTD7kQosQf/ihcPinj1b3jz37hpc9DWBwOP92aYmRfEgmt03W+rsLK6tr5R3Cxtbe/s7tn7B00tE8WgwaSQqh1QDYJH0ECOAtqxAhoGAlrB+CbzWw+gNJfRPU5i8EM6jPiAM4pG6tlHXRmDoihVRENIW8CHI9TTnl12K+4MzjLxclImOeo9+6vblywJIUImqNYdz43RT6lCzgRMS91EQ0zZmA6hY2i2TPvp7P6pc2qUvjOQylSEzkz9PZHSUOtJGJjOkOJIL3qZ+J/XSXBw5ac8ihOEiM0XDRLhoHSyMJw+V8BQTAyhTHFzq8NGVFGGJrKSCcFbfHmZNKsV77xSvbso167zOIrkmJyQM+KRS1Ijt6ROGoSRR/JMXsmb9WS9WO/Wx7y1YOUzh+QPrM8fEmyWxw==</latexit>

activations
<latexit sha1_base64="oKsRCAwYnFMyA+PFiFuM/BUJM6k=">AAACA3icbVBNS8NAEN34WetX1JteFovgqSRV0GPRi8cK9gPaUDbbTbt0kw27k0IJBS/+FS8eFPHqn/Dmv3GT5qCtDwYe780wM8+PBdfgON/Wyura+sZmaau8vbO7t28fHLa0TBRlTSqFVB2faCZ4xJrAQbBOrBgJfcHa/vg289sTpjSX0QNMY+aFZBjxgFMCRurbxz0ZM0VAqoiELCUU+CS39KxvV5yqkwMvE7cgFVSg0be/egNJk5BFQAXRuus6MXgpUcCpYLNyL9EsJnRMhqxraLZQe2n+wwyfGWWAA6lMRYBz9fdESkKtp6FvOkMCI73oZeJ/XjeB4NpLeRQnwCI6XxQkAoPEWSB4wBWjIKaGEKq4uRXTEVEmCRNb2YTgLr68TFq1qntRrd1fVuo3RRwldIJO0Tly0RWqozvUQE1E0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH4V/mLk=</latexit>

activationsprev
<latexit sha1_base64="ms++MraOG1UAd0ZqFWDytEaDwtw=">AAACGXicbVBNS8MwGE79nPOr6tFLcAieRjsFPQ69eJzgPmArJc3SLSxNSpIORunf8OJf8eJBEY968t+Ydj24zQcCD8/zfuR9gphRpR3nx1pb39jc2q7sVHf39g8O7aPjjhKJxKSNBROyFyBFGOWkralmpBdLgqKAkW4wucv97pRIRQV/1LOYeBEacRpSjLSRfNsZiJhIpIXkKCIpwppOC0tlfrrombnTLPPtmlN3CsBV4pakBkq0fPtrMBQ4iQjXmCGl+q4Tay9FUlPMSFYdJIrECE/QiPQNzVcpLy0uy+C5UYYwFNI8rmGh/u1IUaTULApMZYT0WC17ufif1090eOOllMeJJhzPF4UJg1rAPCY4pJJgzWaGICyp+SvEYyRNPibMqgnBXT55lXQadfey3ni4qjVvyzgq4BScgQvggmvQBPegBdoAgyfwAt7Au/VsvVof1ue8dM0qe07AAqzvX2Plowo=</latexit>

backwardnext
<latexit sha1_base64="pwQr5bTKeUI8pGOBTjWNUR6/Z20=">AAACFnicbVC7SgNBFJ31GeMrammzGAQbw24UtAzaWEYwD0hCmJ3cJENmZ5aZu2pY9its/BUbC0Vsxc6/cfIoTOKBgcM593LmniAS3KDn/ThLyyura+uZjezm1vbObm5vv2pUrBlUmBJK1wNqQHAJFeQooB5poGEgoBYMrkd+7R604Ure4TCCVkh7knc5o2ildu60qSLQFJWWNIQkoGzwQHUnbSezhoRHTNN2Lu8VvDHcReJPSZ5MUW7nvpsdxeIQJDJBjWn4XoSthGrkTECabcYGIptJe9CwdBRlWsn4rNQ9tkrH7Sptn0R3rP7dSGhozDAM7GRIsW/mvZH4n9eIsXvZSriMYgTJJkHdWLio3FFHbodrYCiGllCmuf2ry/pUU4a2yawtwZ8/eZFUiwX/rFC8Pc+XrqZ1ZMghOSInxCcXpERuSJlUCCNP5IW8kXfn2Xl1PpzPyeiSM905IDNwvn4BmpahiA==</latexit>

storage

backward
<latexit sha1_base64="/1YGOJYwEch59UggBlJn3T3BvA4=">AAACAHicbVC7TsMwFHXKq5RXgYGBxaJCYqqSggRjBQtjkehDaqPKcW5aq04c2Q6oirLwKywMIMTKZ7DxNzhtBmg5kqWjc+7D93gxZ0rb9rdVWlldW98ob1a2tnd296r7Bx0lEkmhTQUXsucRBZxF0NZMc+jFEkjoceh6k5vc7z6AVExE93oagxuSUcQCRok20rB6NBAxSKKFjEgIqUfo5JFIPxtWa3bdngEvE6cgNVSgNax+DXxBkxAiTTlRqu/YsXZTIjWjHLLKIFEQm+lkBH1D823KTWcHZPjUKD4OhDQv0nim/u5ISajUNPRMZUj0WC16ufif1090cOWmLIoTDRGdLwoSjrXAeRrYZxKo5lNDCJXM/BXTMZGEapNZxYTgLJ68TDqNunNeb9xd1JrXRRxldIxO0Bly0CVqolvUQm1EUYae0St6s56sF+vd+piXlqyi5xD9gfX5A9h5lzU=</latexit>

Weight
gradient

Weight
accumulator

Number classes extended from
“Understanding and Optimizing
Asynchronous Low-Precision Stochastic
Gradient Descent,” ISCA 2017:

• Dataset numbers
• Model/weight numbers
• Gradient numbers
• Communication

numbers
• Activation numbers
• Backward pass numbers
• Weight accumulator
• Linear layer accumulator

Quantize classes independently

• Using low-precision for different number classes has
different effects on throughput.
• Quantizing the dataset numbers improves memory capacity

and overall training example throughput

• Quantizing the model numbers improves cache capacity and
saves on compute

• Quantizing the gradient numbers saves compute

• Quantizing the communication numbers saves on expensive
inter-worker memory bandwidth

Quantize classes independently
• Using low-precision for different number classes has

different effects on statistical efficiency and accuracy.
• Quantizing the dataset numbers means you’re solving a different

problem

• Quantizing the model numbers adds noise to each gradient step,
and often means you can’t exactly represent the solution

• Quantizing the gradient numbers can add errors to each gradient
step

• Quantizing the communication numbers can add errors which
cause workers’ local models to diverge, which slows down
convergence

Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of round-off error.

• Two approaches to rounding:
• biased rounding – round to nearest number
• unbiased rounding – round randomly: 𝑬 𝑄 𝑥 = 𝑥

Using this, we can prove
guarantees that SGD
converges with a low

precision model.

2.0 3.02.7

30% 70%

Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

• Here, Q is an unbiased quantization function

• In expectation, this is just gradient descent

wt+1 = Q̃ (wt � ↵trf(wt;xt, yt))

E[wt+1|wt] = E
h
Q̃ (wt � ↵trf(wt;xt, yt))

���wt

i

= E [wt � ↵trf(wt;xt, yt)|wt]

= wt � ↵trf(wt)

Implementing unbiased rounding

• To implement an unbiased to-integer quantizer:

• Why is this unbiased?

sample u ⇠ Unif[0, 1], then set Q(x) = bx+ uc
<latexit sha1_base64="xpahtTfrS8TbRYgaMN5Puptlas4=">AAACSnicbVBNaxRBFOxZo8b1a6NHL48sQsSwzCRiFAkEveSYgJsEdoalp/dNtkl/DN1vZJdhf58XT7n5I7x4MAQv6ZksQY11qq561f268lJJT3H8PercWbl77/7qg+7DR4+fPO2tPTvytnICh8Iq605y7lFJg0OSpPCkdMh1rvA4P/vU+Mdf0HlpzWeal5hpfmpkIQWnII17PNW5ndWe61IhLKCC1EsNqS3RcbLOcI31MCQWo3gzyTYh/QAp4YxqoCka8EghdbgxewW7kKpCWetgBq+bi1x7Gvf68SBuAbdJsiR9tsTBuHeeTqyoNBoSins/SuKSspo7kkLhoptWHksuzvgpjgJtNvRZ3VaxgJdBmUARliisIWjVPxM1197PdR4mNaep/9drxP95o4qKd1ktTVkRGnH9UFEpIAtNrzCRDgWpeSBcOBl2BTHljgsK7XfbEt43eHvz5dvkaGuQbA+2D9/09z4u61hlL9g622AJ22F7bJ8dsCET7Cv7wX6xi+hb9DO6jH5fj3aiZeY5+wudlSvnfbGr</latexit>

E[Q(x)] = bxc ·P(Q(x) = bxc) + (bxc+ 1) ·P(Q(x) = bxc+ 1)

= bxc+P(Q(x) = bxc+ 1) = bxc+P(bx+ uc = bxc+ 1)

= bxc+P(x+ u � bxc+ 1) = bxc+P(u � bxc+ 1� x)

= bxc+ 1 + (bxc+ 1� x) = x.
<latexit sha1_base64="MB7cgmRPMUsElAREmzxBCDFNUrQ=">AAAD6nicpVNNa9tAEN1I/UjVL6c59rLUNMiYGqkpSXoIhJZCjw7UScASZrVeyUtWWrE7CjLCP6GXHhJCr/1FvfXfdGWr6YfTJLRzejvz3szbYTfKBdfged9WLPvW7Tt3V+859x88fPS4tfbkQMtCUTagUkh1FBHNBM/YADgIdpQrRtJIsMPo+G1dPzxhSnOZfYBpzsKUJBmPOSVgUqM1CwXASoji6t1suO+WndDZ2HUCEQspFS5xoBYooGMJ+Ae3P3NrLt7FS8yO03XcZX0X+52bN2nowaVezICbtnCulf8sd3Fxof0/S02vhP2zqyvU+AUur/LhG1IgWAzu3/XmzJMJ1Hsre6NW2+t588DLwG9AGzXRH7W+BmNJi5RlQAXReuh7OYQVUcCpYDMnKDTLCT0mCRsamJGU6bCaP9UZfm4yYxwbL7HMAM+zvyoqkmo9TSPDTAlM9J+1OnlZbVhAvBNWPMsLYBldDIoLgUHi+t3jMVeMgpgaQKjixiumE6IIBfM7nPkSXtexdXHlZXDwsudv9jb3X7X33jTrWEVP0TPkIh9toz30HvXRAFErsT5ap9aZLexP9rn9eUG1VhrNOvot7C/fAcdHM5w=</latexit>

Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• Pseudorandom number generation can be expensive
• E.G. doing C++ rand or using Mersenne twister takes many

clock cycles

• Empirically, we can use very cheap pseudorandom
number generators
• And still get good statistical results
• For example, we can use XORSHIFT which is just a cyclic

permutation

Benefits of Low-Precision Computation

From https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

Drawbacks of low-precision

• The draw back of low-precision arithmetic is the low
precision!

• Low-precision computation means we accumulate more
rounding error in our computations

• These rounding errors can add up throughout the learning
process, resulting in less accurate learned systems

• The trade-off of low-precision: throughput/memory vs.
accuracy

Example: Low-Precision Neural NetUnderstanding and Optimizing Asynchronous Low-Precision SGD ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0

0.5

1

1.5

2

2.5

D32f M32f D16M16 D8M16 D8M8

th
ro
ug

hp
ut

(G
N
PS

)

precision

Convolution Layer Throughput (Imagenet)

full-precision baseline (gcc)
base gcc
optimized (all software)

(a) Using low precision improves backpropaga-
tion throughput for the neural network convo-
lution layer.

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16

te
st
er
ro
r(
pe
rc
en
t)

model precision x

Test Error for Low Precision LeNet (D8Mx)

MNIST
CIFAR10

(b) Test accuracies of low-precision SGD on
LeNet neural network after 5000 passes, for
various datasets.

(c) Comparison of two-stage and three-stage FPGA designs.

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

tr
ai
ni
ng

lo
ss

iterations (thousands)

MNIST SVM Training Loss (39K model – dense)

D8M8

D8M16

D16M16

D32f M32f

(d) Total training loss across all classes of low-
precision SGD running SVM on MNIST.

0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000

te
st
er
ro
r

iterations (thousands)

MNIST SVM Test Accuracy (39K model – dense)

D8M8

D8M16

D16M16

D32f M32f

(e) Test accuracies of low-precision SGD running
SVM on MNIST.

0

2

4

6

8

10

4 8 16 32
0

20

40

60

80

100

m
ea
su
re
d
th
ro
ug

hp
ut

(G
N
PS

)

ar
ea

us
ag
e
(p
er
ce
nt
)

precision (x bits)

Performance of B�������! on the FPGA (48 KB model)

DxMx throughput
DxMx area

(f) Using lower-precision compute improves FPGA
throughput while decreasing area.

Figure 7: E�ects of running on an FPGA, and validation of approach via alternate applications to convolutional neural network
layers (the bottleneck for most systems) and kernels SVM.

shows that this is in fact the case, and that our optimizations are
necessary to achieve this speedup.

Next, we evaluate the e�ect of low precision on statistical e�-
ciency for neural networks. We study this e�ect by measuring the
test error for LeNet, a successful CNN architecture [25]. To do this,
we modi�ed Mocha [55], a deep learning library, to simulate low-
precision arithmetic of arbitrary bit widths. Since this simulation
was too slow to use ImageNet, we tested on the smaller MNIST [12]
and CIFAR10 [22] digit classi�cation tasks. Convolution layers for
these datasets have speedups similar to those in Figure 7a: for both
MNIST and CIFAR10, we observed D16M16 and D8M8 having 2.0⇥
and 3.0⇥ speedup, respectively, over full-precision. We expect that
that using a 16-bit model (for all the layers) will result in quality
indistinguishable from full-precision. Our experiments show that
this is the case, and we show in Figure 7b that it is possible to
train accurately even below 8-bits, using unbiased rounding. This
is a surprising result, as some previous work has suggested that
training at 8-bit precision is too inaccurate [9, 14].

One common alternative to deep learning for classi�cation tasks
is the kernel support vector machine (SVM). We hypothesized that,
as with logistic regression, B�������! would have little e�ect on
statistical e�ciency in this setting. We evaluated our techniques

by running kernel SVMs15 on MNIST using the random Fourier
features technique [41], a standard proxy for Gaussian kernels.
To study the statistical e�ciency, we measured both the average
training loss and the test error when using all our software op-
timizations (and 18 threads). Our results, which are displayed in
Figure 7d (training loss) and Figure 7e (test error), show that 16-bit
(D16M16) B�������! achieves accuracy that essentially matches
full-precision computation, and 8-bit (D8M8) produces results that
are within a percent of full-precision. We also observed runtimes
similar to those in Figure 3; compared to the 32-bit �oating point
version, the 16-bit and 8-bit versions ran 3.3⇥ and 5.9⇥ faster, re-
spectively. This illustrates that B�������! has higher throughput
than H������! while producing results with similar accuracy.

8 BUCKWILD BEYOND THE CPU
To see how B�������! could be implemented if we were free of
the architectural constraints of a modern CPU, we studied its per-
formance on an FPGA. On the FPGA, we are able to freely explore
the various components of the DMGC model. Speci�cally, we can:
(1) perform arithmetic operations on data types of any precision
and reclaim freed logic resources when doing so; (2) operate with
15We ran ten such SVM classi�ers, one for each digit, in a standard one-versus-all
system.

Performance
eventually

breaks down
as precision is

lowered

Demo

Memory Locality and Scan Order

Memory Locality: Two Kinds

• Memory locality is needed for good cache performance

• Temporal locality
• Frequency of reuse of the same data within a short time window

• Spatial locality
• Frequency of use of data nearby data that has recently been used

• Where is there locality in stochastic gradient descent?

Problem: no dataset locality across iterations

• The training example at each iteration is chosen
randomly
• Called a random scan order
• Impossible for the cache to predict what data will be needed

• Idea: process examples in the order in which they are
stored in memory
• Called a systematic scan order or sequential scan order
• Does this improve the memory locality?

wt+1 = wt � ↵trf(wt;xt, yt)

Random scan order vs. sequential scan order

• Much easier to prove theoretical results for random
scan

• But sequential scan has better systems performance

• In practice, almost everyone uses sequential scan
• There’s no empirical evidence that it’s statistically worse in

most cases
• Even though we can construct cases where using sequential

scan does harm the convergence rate

Other scan orders

• Shuffle-once, then sequential scan
• Shuffle the data once, then systematically scan for the rest of

execution
• Statistically very similar to random scan at the state

• Random reshuffling
• Randomly shuffle on every pass through the data
• Gets better upper bounds for SGD

• e.g. for convex, gets O(1/t) versus O(1/sqrt(t))
• Very commonly used with deep learning

Demo

Questions?

•Upcoming things
• Project feedback coming soon!

