Distributed Learning

CS6787 Lecture 9 — Fall 2020



First, a recap...
Asynchronous Parallelism



Limits on parallel pertormance

* Synchronization

* Have to synchronize to keep the workers aware of each other’s updates to the
model — otherwise can introduce errors

* Synchronization can be very expensive
* Have to stop all the workers and wait for the slowest one

* Have to wait for several round-trip times through a high-latency channel

* Is there something we can do about this?



Idea: Just Don’t Synchronize

* Not synchronizing adds errors due to race conditions
* But our methods were already noisy — maybe these errors are fine

* If we don’t synchronize, get almost perfect parallel speedup



Fast Parallel SGD: HOGWILD!

Multiple parallel workers

Pick a training example 1/;, uniformly at random

Update the model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a training example 1/;, uniformly at random

Update the model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a training example 1/;, uniformly at random

Update the model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a training example 1/;, uniformly at random

Update the model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a training example 1/;, uniformly at random

Update the model Z+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

en

Pick a tra ning example 1/;, uniformly at random

Update tt e model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a training example 1/;, uniformly at random

Update the model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a trz ining example 1/;, uniformly at random

Update tl.e model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Pick a tra ning example 1/;, uniformly at random

Update tt e model X+ using a gradient estimate

Ti41 = Tt — OéVf(mt; y’it)

Iterate

Asynchrenous parallel updates-(no locks) to a single shared model

Lt




DISCUSSION



Distributed Machine Learning



Main idea: use multiple machines to do learning.

Why distribute?
* Train more quickly
* Train models too large to fit on one machine

* Train when the data are inherently distributed



Distributed computing basics

* Distributed parallel computing involves two or more
machines collaborating on a single task by
communicating over a network.

* Distributed computing requires explicit (i.e. written in software)
communication among the workers.

* No shared memory abstraction! (Unlike parallelism on 1 machine)

* There are a few basic patterns of communication that are
used by distributed programs.



Basic patterns of distributed communication

Push: Machine A sends Broadcast: Machine A sends
some data to machine B. data to many machines.

Pull: Machine A requests Reduce: Compute some reduction of data on
some data from machine B. multiple machines and materialize result on B.




Basic patterns of distributed communication (cont’d)

All-reduce: Compute some reduction of data Wait: Pause until another
on multiple machines and materialize result on machine says to continue.
all those machines.

C1 (0|
C2 C2
C3 C3 , |
Barrier: Wait for all workers to
C4 C4

reach some point in their code.

C

C2
C3
C4

All these operations can be
synchronous or asynchronous.



Overlapping computation and communication

* Communicating over the network can have high latency
* we want to hide this latency

* An important principle of distributed computing is overlapping
computation and communication

* For the best performance, we want our workers to still be doing useful
work while communication is going on

* rather than having to stop and wait for the communication to finish

* sometimes called a stall
* asynchronous communication can help a lot here



Running SGD with All-reduce

* All-reduce gives us a simple way of running learning algorithms such as
SGD in a distributed fashion.

* Simply put, the idea 1s to just parallelize the minibatch. We start with
an identical copy of the parameter on each worker.

* Recall that SGD update step looks like:

B
1
Wt1 — Wy — Ot - B E Vfib,t(wt)a
b=1



Running SGD with All-reduce (continued)

e |f there are M worker machines such that B = M - B/, then

1 L1 &
Wi41 = Wy — Qg - i Z B’ vaim,b,t(wt)-
m=1 b=1

* Now, we assign the computation ot the sum when m = 1 to worker 1,
the computation of the sum when m = 2 to worker 2, et cetera.

* After all the gradients are computed, we can perform the outer sum with
an all-reduce operation.



Running SGD with All-reduce (continued)

* After this all-reduce, the whole sum (which is essentially the minibatch
gradient) will be present on all the machines

* so each machine can now update its copy of the parameters

* Since sum 1s same on all machines, the parameters will update in lockstep

* Statistically equivalent to sequential SGD!



Algorithm 1 Distributed SGD with All-Reduce

input: loss function examples f1, fo, ..., number of machines M, per-machine minibatch size B’
input: learning rate schedule «;, initial parameters w,, number of iterations T’
for m =1 to M run in parallel on machine m
load wq from algorithm inputs
fort =1 to T do
select a minibatch 4y, 1 ¢, %m 2,4, - - - im, B’ ¢ Of size B’

B/
1
compute g,, ; < 7l Z V fim . (Wi—1)
b=1

M
all-reduce across all workers to compute G; = Z Im.t
m=1
6%
update model w; + w;_1 — A G
end for

end parallel for
return wr (from any machine)

Same approach can be used for momentum, Adam, etc.



Benefits of distributed SGD with All-reduce

* The algorithm is easy to reason about, since it’s statistically equivalent
to minibatch SGD.

* And we can use the same hyperparameters for the most part.

* The algorithm is easy to implement

* since all the worker machines have the same role and it runs on top of standard
distributed computing primitives.



Drawbacks of distributed SGD with all-reduce

* We’re not overlapping computation and communication.

* While the communication for the all-reduce is happening, the workers are idle.

* The effective minibatch size is growing with the number of
machines

* If we don’t want to run with a large minibatch size for statistical reasons, this can
prevent us from scaling to large numbers of machines using this method.

* Potentially requires lots of network bandwidth to communicate to all
workers.



Where do we get the training examples from?
* There are two general options for distributed learning.

* Training data servers

* Have one or more non-worker servers dedicated to storing the training examples
(e.g. a distributed in-memory filesystem)

* The worker machines load training examples from those servers.

e Partitioned dataset

* Partition the training examples among the workers themselves and store them
locally in memory on the workers.



The Parameter Server Model



The Basic Idea

* Recall from the early lectures in this course that a lot of our theory talked
about the convergence of optimization algorithms.

* This convergence was measured by some function over the parameters at time t
(e.g. the objective function or the norm of its gradient) that is decreasing with t,
which shows that the algorithm is making progress.

* For this to even make sense, though, we need to be able to talk about the
value of the parameters at time t as the algorithm runs.

* E.g. in SGD, we had

Wt41 — Wt — Oétvfz’t (’wt)



Parameter Server Basics Continued

* For a program running o
time t is just the value of ¢

DRAM) at that time.

For SGD with all-reduce, we can answer this

question easily, since the value of the parameters is
the same on all workers (it’s guaranteed to be the
same by the all-reduce operation). We just appoint

* Butina distributed §ettin this identical shared value to be the value of the
must be done explicitly.

* Each machine will usually
time, some of which may

parameters at any given time.

* This raises the question: when reasoning about a distributed algorithm,
what we should consider to be the value of the parameters a given time?



The Parameter Server Model

* The parameter server model answers this question differently by a%pointing a
single machine, the parameter server, the explicit responsibility o
maintaining the current value of the parameters.

* The most up-to-date gold-standard parameters are the ones stored in memory on the
parameter server.

* The parameter server updates its parameters by using gradients that are
computed by the other machines, known as workers, and pushed to the
parameter Servet.

* Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to
compute gradients.



Parameter server model: visually

e A common model for distributed ML

Parallel workers

Training
data

/

S

Parallel workers

* workers send gradients to
parameter server

* parameter server sends
parameters back to workers

Centralized

Parallel workers

parameter server

N\

Parallel workers




Learning with the parameter server

* Two options when learning with a parameter server

* Synchronous distributed training

* Similar to all-reduce, but with gradients summed on a central parameter server
* Still equivalent to sequential minibatch SGD

* Asynchronous distributed training

* Compute and send gradients and add them to the model as soon as possible

* Broadcast updates whenever they are available



Parameter server summary

* The parameter server holds the central copy of the weights

* Each worker computes gradients on minibatches the data
* Then sends those gradients back to the parameter server

* Periodically, the worker pulls an updated copy of the weights
from the parameter servet.

* All this can be done asynchronously.



Multiple parameter servers

* If the parameters are too numerous for a single parameter server to
handle, we can use multiple parameter server machines.

* We partition the parameters among the multiple parameter servers
* Each server 1s only responsible for maintaining the parameters in its partition.

* When a worker wants to send a gradient, it will partition that gradient vector and
send each chunk to the corresponding parameter server; later, it will recetve the
corresponding chunk of the updated model from that parameter server machine.

* This lets us scale up to very large models!



Other Ways To Distribute

The methods we discussed so far distributed across the minibatch (for all-reduce SGD)
and across iterations of SGD (for asynchronous parameter-server SGD).

But there are other ways to distribute that are used in practice too.



“Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel
Stochastic Gradient Descent.” NeurIPS 2017

Decentralized learning

* [dea: learn without any central coordination

* No parameter server; each worker has its own copy of the model

* Workers update by doing the following:
* Run an SGD update step using an example stored on that worker,

* Average the worker’s current model with the models of some other
workers, usually its neighbors in some sparse graph

e This limits total communication

* This is sometimes called a gossip algorithm



e.g. “Local SGD Converges Fast and
Communicates Little.” ICLR 2019

Local SGD

* Many parallel workers update their own copy of the model by
running SGD steps using their own local data

* Periodically the workers all average by taking an all-reduce

* Like all-reduce SGD, but the all-reduce happens less frequently than
at every SGD iteration

* Can generalize better than large-batch SGD
* “Don’t use large mini-batches, use local SGD.” ICLR 2020



So far: Data Parallelism

* The methods we’ve discussed are parallelizing over examples

* Each worker 1s running the same computation to compute gradients,
just on different examples.

* This 1s an instance of data parallelism

* But data parallelism is not the only option...



Model Parallelism

* Main idea: partition the layers of a neural network among different worker
machines.

* This makes each worker responsible for a subset of the parameters.

* Forward and backward signals running through the neural network during
backpropagation now also run across the computer network between the
different parallel machines.

* Particularly useful if the parameters won’t fit in memory on a single machine.

* This is very important when we move to specialized machine learning accelerator
hardware, where we’re running on chips that typically have limited memory and
communication bandwidth.



Pipeline Parallelism

Loss
PN
* Distribute a DNN over multiple Device3 | I, - B.
workers by assigning each layer to t !
its own worker. Device2 | F., - B,
* Each worker manages and updates the } '
parameters for its own layer. Device 1 F, . B,
* Use microbatching to avoid stalls : I
Device 0 Fo ~ Bo
* Advantage: workers no longer need \ /
to store the entire model
* Can often keep parameters in memory Gradients

From “GPipe: Easy Scaling with Micro-Batch
Pipeline Parallelism”



Federated learning

* Sometimes, your data is inherently distributed
* For example, data gathered on people’s mobile phones
* For example, data measured by internet-of-things devices

* Rather than centralizing the data, may want to learn on the
distributed devices themselves

* E.g. to preserve the privacy of users

* This is called federated learning
* Lots of interest from industry right now



Distributed computing for
hyperparameter optimization

* This is something we’ve already talked about.

* Many commonly used hyperparameter optimization algorithms, such as
orid search and random search, are very simple to distribute.

* They can easily be run on many parallel workers to get results faster.




Questions?

* Upcoming things
* Final project proposal — due today
* Programming Assignment 2 — due Wednesday



