CS6787: Advanced Machine
Learning Systems

CS6787 Lecture 1 — Fall 2020

this course

What’s missing in the basic stuff?

Efficiency!

Motivation:

Machine learning applications
involve large amounts of data

More data = Better services

Better systems = More data

How do practitioners make
their systems better?

How do we improve our systems?

Course outline

-

* Build frameworks/software that make it easy to express &
train a machine learning/deep learning model.

Part 1\

-

* Use methods for accelerating convergence of learning
algorithms — learn in fewer iterations.

Part 2\

-

* Automatically configure learning systems by using
hyperparameter optimization

Part 3\

-

* Use methods for improving hardware efficiency — run
each iteration faster.

Part 4\

-

.

* Use specialized ML hardware accelerators and get our
frameworks to do as much as possible automatically.

Part 5\

Course Format

One half

Traditional lectures

Broad description of techniques

One half

Important papets
Presentations by you
In-class discussions

Reviews of each paper

Prerequisites

* Basic ML. knowledge (CS 4780)

* Math/statistics knowledge
* At the level of the entrance exam for CS 4780

Grading

* Paper presentations

* Discussion participation

* Paper reviews

* Programming assignments

* Final project

Paper presentations

* Papers listed on the website
* 20-minute presentation slot for each paper
* Presenting in groups of two-to-three

* Signups by Monday!

* Survey will be sent out over the next couple of days

* Learning goal
* Practice digesting and talking about other people’s work

Paper Reading and Discussion
* Hach presentation is followed by questions and breakout discussion

* Please read at least one of the papers before attending class
* And at least skim the other paper, so you know what to expect

* Note: grade is not for attendance, but rather on participation and
bringing insightful ideas to the table — full remote support

* Learning goal: practice how to deeply read and critique a
paper in context

Papet Reviews

* For each class period, submit a review of one of the two papers
* (Only 1t you are not presenting,)

* Review the paper as if you were doing peer review on a newly
submitted work

* Reviews due a few days after our in-class discussion

* Learning goal: build technical reading and writing skills, and
get some window into how peer review works.

Programming Assignments

* Two assignments in the first part of the semester only

* Learning goal: become familiar with ML
frameworks/tools

* ...and the principles that underlie them
* This will hopefully build skills for you to use in the final project

Final Project

* Open-ended: work on what you think is interesting!
* Learning goal: do a small bit of non-trivial research on your own

* Groups of up to three

* Your proposed project must include:
* The implementation of a machine learning system for some task

* Exploring one or more ot the techniques discussed in the course
* To empirically evaluate performance and compare with a baseline.

Late Policy

* This 1s a graduate level course

* Two free late days for each of the paper reviews and programming
assignments

* No late days on the final project

* To make things easy on the graders

* No late days on the presentations (for obvious reasons)

Questions?

Today’s Topic
Stochastic Gradient Descent:

The Workhorse of Machine
Learning

CS6787 Lecture 1 — Fall 2020

But first...an icebreaker activity!

For each person in order:
* What 1s your namer
* What are you studying?
* What do you hope to learn from CS6787?

After everyone 1s done, discuss together:

Why do people use stochastic gradient descent?

Today’s Topic
Stochastic Gradient Descent:

The Workhorse of Machine
Learning

CS6787 Lecture 1 — Fall 2020

Optimization

* Much of machine learning can be written as an optimization problem

loss function

N /

min l 2 :f(w $>% training

model %wERd n =t examples
1=1

* Example loss functions: logistic regression, linear regression, principle
component analysis, neural network loss, empirical risk minimization

Types of Optimization

* Convex optimization

* The easy case
* Includes logistic regression, linear regression, SVM

. .] A good strategy:
° _
Non-convex optimization Build theoretical intuition about
e NP-hard in general techniques from the convex case
e Includes deep learning where we can prove things...

...and apply it to better understand
more complicated systems.

An Abridged Introduction to
Convex Functions

Convex Functions

Va € [0,1], f(az + (1 —a)y) < af(z) + (1 —a)f(y)

4.5
4
3.5 2
) flx) =2
2.5
2
1.5
1
0.5

0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Example: Quadratic

f(a) = 2°

(az + (1 — a)y)? = o?2* + 2a(1 — a)zy + (1 — a)?y?
=az’ + (1 — o)y — a(l — a)(z? + 22y + y°)
<az®+ (1 - a)y?

Example: Abs

+ (1 —a)y
+ (1 —a)ly

Example: Exponential

fla) = et

6oz:c—|—(1—oz)y _ 6y€oz(:c—y) — oY Z ian(x o y)n

Properties of convex functions
* Any line segment we draw between two points lies above the curve

* Corollary: every local minimum 1s a global minimum
* Why?

* This 1s what makes convex optimization easy

* It suffices to find a local minimum, because we know 1t will be global

Properties of convex functions (continued)

* Non-negative combinations of convex functions are convex
h(z) = af(x)+ bg(x)
* Affine scalings of convex functions are convex
h(z) = f(Az + b)

* Compositions of convex functions are NOT generally convex

* Neural nets are like this

Convex Functions: Alternative Definitions

e First-order condition

(@ =y, Vf(x) =Vf(y)) =0
* Second-order condition
Vif(z) = 0
* This means that the matrix of second dertvatives 1s positive semidefinite

A»0& Ve, (x, Ax) > 0

Example: Quadratic

Example: Exponential

Example: Logistic LLoss

f(x) =log(l +¢€”)

Strongly Convex Functions

* Basically the easiest class of functions for optimization

e First-order condition:

(x —y,Vf(x) = V) > plz—yl

e Second-order condition:

VEf(x) = pl

* Equivalently:

h(z) = f(z) — &|lx||* is convex

Which of the functions we’ve looked at are
strongly convexr

Which of the functions we’ve looked at are
strongly convexr

Concave functions

* A function 1s concave if its negation is convex
f is convex < h(x) = —f(x) is concave

* Example: f(x) = log(z)

Why care about convex tunctions?

Convex Optimization

* (Goal 1s to minimize a convex function

4.5
3.5
2.5
1.5

0.5

-2.5 -2 -1.5 -1 -0.5 0

Gradient Descent

w <+ w — aV f(w)

1.5

0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Gradient Descent Converges

* [terative definition of gradient descent

Wi4+1 — Wy — onf(wt)

* Assumptions/terminology:

Global optimum is x*

Bounded second derivative ul < V4 f(x) < LI

Gradient Descent Converges (continued)

wipr —w =wy —w —a(Vf(w)—Vfw))
= wy, —w* — aVaf(¢) (wy — w*)

Taking the norm
Jweyr —w* || < [T —aV2f($)]
< max(|1 — apl, |’

(I — aV2F(C)) (wy — w")

p lwe —w?|

| — all) - |lwy — w™]| .

Gradient Descent Converges (continued)

e So if we set (¥ = 2/(L —+ ,u) then

* Called convergence at a linear rate or sometimes (confusingly) exponential rate

The Problem with Gradient Descent

* Large-scale optimization
1 n
h(w) = — 3 flwim)
1=1

* Computing the gradient takes O(n) time

Vh(w) = = 3"V (w;)

Gradient Descent with More Data

* Suppose we add more examples to our training set

* For simplicity, imagine we just add an extra copy of every training example

1 < 1 <
Vh(w) = %;Vf(w;xi) = Qn;wm;m

* Same objective function

* But gradients take 2x the time to compute (unless we cheat)

* We want to scale up to huge datasets, so how can we do this?

Stochastic Gradient Descent

* Idea: rather than using the full gradient, just use one training example

* Super fast to compute

Wt41 — Wt — avf(wta x’it)

* In expectation, it’s just gradient descent:
This is an example

E[wt—l—l] _ E[wt] - E[Vf(wt, th)] selected uniformly at

random from the dataset.

1 mn
= Elw;] — a - m ZVf(wt,:ci)
i=1

Stochastic Gradient Descent Convergence

* Can SGD converge using just one example to estimate the gradient?

wir1 —w =wr —w" —a(Vh(wy) — Vh(w™)) — a(Vf(ws;z;,) — Vh(wy))
= (I —aV?h(¢)) (wy — w*) — a (V f(wg;25,) — VR(wy))

e How do we handle this extra noise term?

* Answer: bound it using the second moment!

Stochastic Gradient Descent Convergence

E (w1 — 0] = B[|(Z - aV2h(¢)) (we — w) - (V f(wi) — Vh(un) |

=E || (I - aV2h(¢) (wy — w)|’]

~ aE |(V f(wg;z,) w(wt))T (I = aV2h(@)) (e —w”)|
0% [|y<Vf<wt-xz-t) — Vh(w)|’
= B[4 - av?h(6) tw —w)l] + B [I(V i)~ Vi)

< (1—ap)? .E[Hwt—w |y] +a2M

assuming small enough o and the bound E [H(Vf(w; T;) — Vh(w))\ﬂ <M

Stochastic Gradient Descent Convergence

* Already we can see that this converges to a fixed point of

M
lim E [Hwt - w*\ﬂ < ¢
t— 00 2,u — oz,u2

* This phenomenon 1s called converging to a noise ball

* Rather than approaching the optimum, SGD (with a constant step size)
converges to a region of low variance around the optimum

* This 1s okay for a lot ot applications that only need approximate solutions

Demo

Stochastic gradient descent
1s super popular.

What Does SGD Power? ,
O PyTorch

* Everything] ‘:Co:‘ Al D NaGo ell
. o N ® theano
‘ TensorFlow Caffe

?I Gy KeystoneML

But how SGD 1s implemented in
practice 1s not exactly what I’ve
just shown you...

...and we’ll see how i1t’s different
in the upcoming lectures.

