
Our First Hyperparameters: 
Mini-batching, Regularization, 

and Momentum
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Where we left off

• We talked about how we can compute gradients easily and efficiently 
using ML frameworks.

• We talked about overfitting, which can negatively impact generalization 
from the training set to the test set.

• We saw in the paper we read that early stopping is one way that 
overfitting can be prevented.
• It’s an important technique, but I won’t cover it in today’s lecture since we already 

covered it in the paper.



How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with little or no extra 
computational cost?

• Notice from the demo that some loss functions do better than others
• E.g. the linear loss function did better than the polynomial loss function
• Can we modify our loss function to prevent overfitting?



Regularization

• Add an extra regularization term to the objective function

• Most popular type: L2 regularization

• Also popular: L1 regularization
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Benefits of  Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting
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Demo



How to choose the regularization parameter?

• One way is to use an independent validation set to estimate the test 
error, and set the regularization parameter manually so that it is high 
enough to avoid overfitting
• This is what we saw in the demo

• But doing this naively can be computationally expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization



More general forms of  regularization

• Regularization is used more generally to describe anything 
that helps prevent overfitting
• By biasing learning by making some models more desirable a priori

•Many techniques that give throughput improvements also have 
a regularizing effect
• Sometimes: a win-win of  better statistical and hardware performance



Mini-Batching



Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something intermediate?
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Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of  all subsets of  {1, … , N} 
of  size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent
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How does runtime cost of  Mini-Batch 
compare to SGD and Gradient Descent?
• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster than SGD?
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Mini-Batch SGD Converges

• Start by breaking up the update rule into expected update and noise

• Second moment bound
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

• Because we sampled B uniformly at random, for i ≠ j

• So we can bound our square error term as
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

• Compared with SGD, squared error term decreased by a factor of  b



Mini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of  size

• Since mini-batching decreases error term by a factor of  b, it will have

• Noise ball smaller by the same factor! 
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Advantages of  Mini-Batch (reprise) 

• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic gradient descent
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How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a b-times-as-

accurate answer
• But we could have gotten a b-times-as-accurate answer by just running SGD for 

b times as many steps with a step size of  ⍺/b.

• But it still makes sense to run it for systems and statistical reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for hyperparameter optimization



Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based Training of  Deep 

Architectures,” Bengio 2012.



Another class of  technique:
Acceleration and Momentum



How does the step size affect convergence?

• Let’s go back to gradient descent

• Simplest possible case: a quadratic function
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Step size vs. convergence: graphically
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What if  the curvature is different?

f(x) = 2x2 xt+1 = xt � 4↵xt = (1� 4↵)xt
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Step size vs. curvature 

• For these one-dimensional quadratics, how we should set the step size 
depends on the curvature
• More curvature à smaller ideal step size

• What about higher-dimensional problems?
• Let’s look at a really simple quadratic that’s just a sum of  our examples.
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Simple two dimensional problem

• Gradient descent:
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What’s the convergence rate?

• Look at the worst-case contraction factor of  the update

• Contraction is maximum of  previous two values.
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Convergence of  two-dimensional quadratic

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1.8

0 0.5 1 1.5 2 2.5 3

co
nv

er
ge

nc
e 

ra
te

step size

previous f
new f
two-dimensional f



What does this example show?

• We’d like to set the step size larger for dimension with less curvature, and 
smaller for the dimension with more curvature.

• But we can’t, because there is only a single step-size parameter.

• There’s a trade-off
• Optimal convergence rate is substantially worse than what we’d get in each 

scenario individually — individually we converge in one iteration.



For general quadratics

• For PSD symmetric A,

• Gradient descent has update step

• What does the convergence rate look like in general?
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Convergence rate for general quadratics
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Optimal convergence rate

• Minimize:

• Optimal value occurs when

• Optimal rate is
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What affects this optimal rate?

• Here, ! is called the condition 
number of  the matrix A.

• Problems with larger condition 
numbers converge slower.
• Called poorly conditioned.
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Poorly conditioned problems

• Intuitively, these are problems that are highly curved in some 
directions but flat in others

• Happens pretty often in machine learning
• Measure something unrelated à low curvature in that direction
• Also affects stochastic gradient descent

• How do we deal with this?



Momentum



Motivation

• Can we tell the difference between the curved and flat directions using 
information that is already available to the algorithm?

• Idea: in the one-dimensional case, if  the gradients are reversing sign, 
then the step size is too large
• Because we’re over-shooting the optimum
• And if  the gradients stay in the same direction, then step size is too small

• Can we leverage this to make steps smaller when gradients reverse sign 
and larger when gradients are consistently in the same direction?



Polyak Momentum

• Add extra momentum term to gradient descent

• Intuition: if  current gradient step is in same direction as previous step, 
then move a little further in that direction.
• And if  it’s in the opposite direction, move less far.

• Also known as the heavy ball method.
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Momentum for 1D Quadratics

• Momentum gradient descent gives
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Characterizing momentum for 1D quadratics

• Start with

• Trick: let  
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Characterizing momentum (continued)

• Let

• Then we get the simplified characterization

• This is a degree-t polynomial in u
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Chebyshev Polynomials

• If  we initialize such that                              then these are a special family 
of  polynomials called the Chebyshev polynomials 

• Standard notation:

• These polynomials have an important property: for all t
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Chebyshev Polynomials
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Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T1(u) = u



Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5



Characterizing momentum (continued)

• What does this mean for our 1D quadratics?
• Recall that we let 

• So
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Consequences of  momentum analysis

• Convergence rate depends only on momentum parameter β
• Not on step size or curvature.

• We don’t need to be that precise in setting the step size
• It just needs to be within a window
• Pointed out in “YellowFin and the Art of  Momentum Tuning” by Zhang et. al.

• If  we have a multidimensional quadratic problem, the convergence rate 
will be the same in all directions
• This is different from the gradient descent case where we had a trade-off



Choosing the parameters

• How should we set the step size and momentum parameter if  we 
only have bounds on λ ?

• Need:

• Suffices to have:
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Choosing the parameters (continued)

• Adding both equations:
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Choosing the parameters (continued)

• Subtracting both equations:
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Choosing the parameters (continued)

• Combining these results:
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Choosing the parameters (continued)

• Quadratic formula: 0 = 1� 2
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Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

• But with momentum, the optimal rate is

• This is called convergence at an accelerated rate
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Demo



Setting the parameters

• How do we set the momentum in practice for machine learning?

• One method: hyperparameter optimization

• Another method: just set β = 0.9
• Works across a range of  problems
• Actually quite popular in deep learning



Nesterov momentum



What about more general functions?

• Previous analysis was for quadratics

• Does this work for general convex functions?

• Answer: not in general
• We need to do something slightly different



Nesterov Momentum

• Slightly different rule

• Main difference: separate the momentum state from the point that we are 
calculating the gradient at.

xt+1 = yt � ↵rf(yt)

yt+1 = xt+1 + �(xt+1 � xt)



Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex problem

• Optimal assignment of  the parameters:
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Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time

• Significant speedups in practice



Demo



What about SGD?

• All our above analysis was for gradient descent

• But momentum still produces empirical improvements when used with 
stochastic gradient descent

• And we’ll see how in one of  the papers we’re reading on Wednesday



Questions?

• Upcoming things
• Paper 1 review due Today
• Next paper presentations on Wednesday


