Our First Hyperparameters:
Mini-batching, Regularization,
and Momentum

CS6787 Lecture 3 — Fall 2019



Where we left off

* We talked about how we can compute gradients easily and efficiently
using ML frameworks.

* We talked about overfitting, which can negatively impact generalization
from the training set to the test set.

* We saw 1n the paper we read that early stopping is one way that
overfitting can be prevented.

* It’s an important technique, but I won’t cover it in today’s lecture since we already
covered it in the paper.



How to address overtitting

* Many, many techniques to deal with overfitting

* Have varying computational costs

* But this is a systems course...so what can we do with little or no extra
computational cost?

* Notice from the demo that some loss functions do better than others
* E.g. the linear loss function did better than the polynomial loss function

* Can we modify our loss function to prevent overtitting?



Regularization

* Add an extra regularization term to the objective function

* Most popular type: L2 regularization

N N d
1 1
hw) = = 30 flws) + o2 wld = 3 flwiz) +0° Y a2
1=1 1=1 k=1

* Also popular: L1 regularization
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Benetits of Regularization

* Cheap to compute

* For SGD and L2 regularization, there’s just an extra scaling
_ 2 :
Wii+1 = (1 — 204150' )wt — atVf(wt,a:‘it)

* L2 regularization makes the objective strongly convex

* This makes it easier to get and prove bounds on convergence

* Helps with ovetfitting



Demo



How to choose the regularization parameter?

* One way is to use an independent validation set to estimate the test
error, and set the regularization parameter manually so that it 1s high
enough to avoid overtitting

e This is what we saw 1n the demo

* But doing this naively can be computationally expensive

* Need to re-run learning algorithm many times

* Yet another use case for hyperparameter optimization



More general forms of regularization

* Regularization 1s used more generally to describe anything
that helps prevent overtitting

* By biasing learning by making some models more desirable a prior:

* Many techniques that give throughput improvements also have
a regularizing etffect

* Sometimes: a win-win of better statistical and hardware performance



Mini-Batching



Gradient Descent vs. SGD

* Gradient descent: all examples at once
Wil = Wt — Gy g V f(wye; x;)

* Stochastic gradient descent: one example at a time
w1 = wy — aV f(we; @i, )

* Is it really all or nothing? Can we do something intermediate?



Mini-Batch Stochastic Gradient Descent

* An intermediate approach

1
Wt41 = Wt — Oét|B ‘ Z Vf(wﬁxi)
t

where B, is sampled uniformly from the set of all subsets of {1, ..., N}
of size b.

* The b parameter is the batch size
* Typically choose b << N.

* Also called mini-batch gradient descent



How does runtime cost of Mini-Batch
compare to SGD and Gradient Descent?

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* But takes more time for each update than SGD
* So what’s the benefit?

* It’s more like gradient descent, so maybe it converges faster than SGD?



Mini-Batch SGD Converges

* Start by breaking up the update rule into expected update and noise

W41 — W

e Second moment bound
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

* Because we sampled B uniformly at random, for i # j
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)
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* Compared with SGD, squared error term decreased by a factor of b



Mini-Batch SGD Converges (continued)

* Recall that SGD converged to a noise ball of size

. aM
lim E |[|wr — w*||?] <
T—00 21 — ouft?
* Since mini-batching decreases error term by a factor of b, it will have
M
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* Noise ball smaller by the same factor!



Advantages of Mini-Batch (reprise)

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* Converges to a smaller noise ball than stochastic gradient descent
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How to choose the batch size?

* Mini-batching is not a free win

* Narvely, compared with SGD, 1t takes b times as much effort to get a b-times-as-
accurate answer

* But we could have gotten a b-times-as-accurate answer by just running SGD for
b times as many steps with a step size of a/b.

* But 1t still makes sense to run it for systems and statistical reasons
* Mini-batching exposes more parallelism
* Mini-batching lets us estimate statistics about the full gradient more accurately

* Another use case for hyperparameter optimization



Mini-Batch SGD is very widely used

* Including in basically all neural network training

* b = 32 is a typical default value for batch size

* From “Practical Recommendations for Gradient-Based Training of Deep
Architectures,” Bengio 2012.



Another class of technique:
Acceleration and Momentum



How does the step size affect convergence?

* Let’s go back to gradient descent
Lt+1 = Lt — Cka(.’l?t)

* Simplest possible case: a quadratic function

fla) = 507



Step size vs. convergence: graphically
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What if the curvature is different?

f(x) = 22° Tii1 = ¢ — 4dazy = (1 — da)xy
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Step size vs. curvature

* For these one-dimensional quadratics, how we should set the step size
depends on the curvature

* More curvature = smaller ideal step size

* What about higher-dimensional problems?

* Let’s look at a really simple quadratic that’s just 2 sum of our examples.
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Simple two dimensional problem

e Gradient descent:

Lt41
Yt+1

1
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What’s the convergence rater

e [.ook at the worst-case contraction factor of the update

max
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* Contraction 1s maximum of previous two values.



Convergence of two-dimensional quadratic
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What does this example show?

* We'd like to set the step size larger for dimension with less curvature, and
smaller for the dimension with more curvature.

* But we can’t, because there 1s only a single step-size parameter.

 There’s a trade-off

* Optimal convergence rate 1s substantially worse than what we’d get 1n each
scenario individually — individually we converge in one iteration.



For general quadratics

* For PSD symmetric A, 1

f(x) = iazTAx

* Gradient descent has update step
Lt+1 — Lt — OéAZEt — ([ — OéA)SEt

* What does the convergence rate look like in general?



Convergence rate for general quadratics
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Optimal convergence rate

* Minimize:

* Optimal value occurs when

2
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What attects this optimal rate?

Aax — Amin * Here, K 1s called the condition
rate = number of the matrix A.
>\maX >\min
L )\max/)\min — 1 o — )\max
)\max/)\min )\min
H: —_
o K 4 ' * Problems with larger condition

numbers converge slower.
* Called poorly conditioned.



Poorly conditioned problems

* Intuitively, these are problems that are highly curved in some
directions but flat in others

* Happens pretty often in machine learning
* Measure something unrelated — low curvature in that direction

* Also affects stochastic gradient descent

* How do we deal with this?



Momentum



Motivation

* Can we tell the difference between the curved and flat directions using
information that is already available to the algorithm?

* Idea: in the one-dimensional case, if the gradients are reversing sign,
then the step size 1s too large
* Because we’re over-shooting the optimum

* And if the gradients stay in the same direction, then step size 1s too small

* Can we leverage this to make steps smaller when gradients reverse sign
and larger when gradients are consistently in the same direction?



Polyak Momentum

* Add extra momentum term to gradient descent

Lt+1 — Tt — CVVf(SUt) —+ 5(513‘75 — th_l)

* Intuition: if current gradient step is in same direction as previous step,
then move a little further in that direction.

* And 1if it’s in the opposite direction, move less far.

* Also known as the heavy ball method.



Momentum for 1D Quadratics

* Momentum gradient descent gives

Ti41 = Tt — ATt + B(Tr — Tp—1)

= (1406 —aXN)xy — Bxi_q



Characterizing momentum for 1D quadratics

e Start with 311 = (1 + 8 — aN)xy — Bxi_q

e Trick: let z; = BY/?2,

BV 2o = (14 B — a2z — 8- U D/22,

. 1+ 05— aA
tH1 =
VB

£t — Rt—1



Characterizing momentum (continued)

" Let u—l_I_ﬁ_a)\
2¢/8

* Then we get the simplified characterization

Zi41 = 2UZ¢ — Zt—1

* This is a degree-¢ polynomial in u



Chebyshev Polynomials

e If we initialize such that 2o = 1, 21 = U then these are a special family
of polynomials called the Chebyshev polynomials

Zt41 = 2UZ¢ — Zt—1

e Standard notation:

Tii1(uw) = 2uTy(u) — T 1 (u)

* These polynomials have an important property: for all t

— 1< u<<l=-1<z2z <1
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Chebyshev Polynomials
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Chebyshev Polynomials

To(u) = 2u* — 1

e



Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials

15

0.5

-0.5

-1.5

-1.5 -1 -0.5 0 0.5



Chebyshev Polynomials

TR
Il

-0.5



Characterizing momentum (continued)

* What does this mean for our 1D quadratics?
* Recall that we let T¢ = 575/22%

xe = B2 o - Ty(u)
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Consequences of momentum analysis

* Convergence rate depends only on momentum parameter 3

* Not on step size Oor curvature.

* We don’t need to be that precise in setting the step size

* It just needs to be within a window
* Pointed out in “YellowFin and the Art of Momentum Tuning’ by Zhang et. al.

* If we have a multidimensional quadratic problem, the convergence rate
will be the same in all directions

* This is different from the gradient descent case where we had a trade-oft



Choosing the parameters

* How should we set the step size and momentum parameter if we
only have bounds on A ?

1+ 08— al
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Choosing the parameters (continued)

* Adding both equations:

0 — 2 + 25 — A max — XA min

2V
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Choosing the parameters (continued)

* Subtracting both equations:

1+5_Oé)\min_1_6+a)\max _ 9




Choosing the parameters (continued)

* Combining these results: 0 2+ 20 a(Amax — Amin) _ 2
B )\max + )\min 2\/3
2+ 25 . (>\maX — )\min) — 9
>\max + )\min 2\/3
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Choosing the parameters (continued)

* Quadratic formula:
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Gradient Descent versus Momentum

* Recall: gradient descent had a convergence rate of

Kk — 1
k-+ 1

* But with momentum, the optimal rate is
VK +1

* This 1s called convergence at an accelerated rate




Demo



Setting the parameters

* How do we set the momentum in practice for machine learning?
* One method: hyperparameter optimization

* Another method: just set 3 = 0.9
* Works across a range of problems
* Actually quite popular in deep learning



Nesterov momentum



What about more general functions?

* Previous analysis was for quadratics
* Does this work for general convex functions?

* Answer: not in general
* We need to do something slightly different



Nesterov Momentum

* Slightly different rule

Ti11 = Yt — oV f(ye)
Yt+1 = Lt+1 5($t+1 — ﬂi‘t)

* Main difference: separate the momentum state from the point that we are
calculating the gradient at.



Nesterov Momentum Analysis

* Converges at an accelerated rate for ANY convex problem

VR
NG

* Optimal assignment of the parameters:




Nesterov Momentum 1s Also Very Popular

* People use it in practice for deep learning all the time

* Significant speedups in practice



Demo



What about SGD?

* All our above analysis was for gradient descent

* But momentum still produces empirical improvements when used with
stochastic gradient descent

* And we’ll see how in one of the papers we’re reading on Wednesday



Questions?

* Upcoming things
* Paper 1 review due Today
* Next paper presentations on Wednesday



