Our First Hyperparameters:
Mini-batching, Regularization,
and Momentum

CS6787 Lecture 3 — Fall 2019

Where we left off

* We talked about how we can compute gradients easily and efficiently
using ML frameworks.

* We talked about overfitting, which can negatively impact generalization
from the training set to the test set.

* We saw 1n the paper we read that early stopping is one way that
overfitting can be prevented.

* It’s an important technique, but I won’t cover it in today’s lecture since we already
covered it in the paper.

How to address overtitting

* Many, many techniques to deal with overfitting

* Have varying computational costs

* But this is a systems course...so what can we do with little or no extra
computational cost?

* Notice from the demo that some loss functions do better than others
* E.g. the linear loss function did better than the polynomial loss function

* Can we modify our loss function to prevent overtitting?

Regularization

* Add an extra regularization term to the objective function

* Most popular type: L2 regularization

N N d
1 1
hw) = = 30 flws) + o2 wld = 3 flwiz) +0° Y a2
1=1 1=1 k=1

* Also popular: L1 regularization

1 N 1 N d
hw) = + 3 fwiz) +llwl = = S fwizs) +43
1=1 1=1 k=1

Benetits of Regularization

* Cheap to compute

* For SGD and L2 regularization, there’s just an extra scaling
_ 2 :
Wii+1 = (1 — 204150')wt — atVf(wt,a:‘it)

* L2 regularization makes the objective strongly convex

* This makes it easier to get and prove bounds on convergence

* Helps with ovetfitting

Demo

How to choose the regularization parameter?

* One way is to use an independent validation set to estimate the test
error, and set the regularization parameter manually so that it 1s high
enough to avoid overtitting

e This is what we saw 1n the demo

* But doing this naively can be computationally expensive

* Need to re-run learning algorithm many times

* Yet another use case for hyperparameter optimization

More general forms of regularization

* Regularization 1s used more generally to describe anything
that helps prevent overtitting

* By biasing learning by making some models more desirable a prior:

* Many techniques that give throughput improvements also have
a regularizing etffect

* Sometimes: a win-win of better statistical and hardware performance

Mini-Batching

Gradient Descent vs. SGD

* Gradient descent: all examples at once
Wil = Wt — Gy g V f(wye; x;)

* Stochastic gradient descent: one example at a time
w1 = wy — aV f(we; @i,)

* Is it really all or nothing? Can we do something intermediate?

Mini-Batch Stochastic Gradient Descent

* An intermediate approach

1
Wt41 = Wt — Oét|B ‘ Z Vf(wﬁxi)
t

where B, is sampled uniformly from the set of all subsets of {1, ..., N}
of size b.

* The b parameter is the batch size
* Typically choose b << N.

* Also called mini-batch gradient descent

How does runtime cost of Mini-Batch
compare to SGD and Gradient Descent?

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* But takes more time for each update than SGD
* So what’s the benefit?

* It’s more like gradient descent, so maybe it converges faster than SGD?

Mini-Batch SGD Converges

* Start by breaking up the update rule into expected update and noise

W41 — W

e Second moment bound

E [|[wiy1 — w”||]

+aoE

= wp — w* — oy (Vh(w) — Vh(w™))

Z (V f(wg; ;) — Vh(wy))

ZEBt

1

By

— W — oy (Vh(wt) — Vh(w*)) HQ]

S (Vi (wis) — Vh(w,))

1€ By

Mini-Batch SGD Converges (continued)

1
E B, Z (Vf(we; 25) — VR(wy))

1€ By

1
—E @Zm

1€ By

o7

Mini-Batch SGD Converges (continued)

* Because we sampled B uniformly at random, for i # j

b b—1
E[ﬁzﬂj]:P(ieB/\jeB):P(z'eB)P(jeB\z‘eB):N-N_1
b
21 _ P (s _ Y
E[ﬁi}—P(zEB)—N
* So we can bound our square error term as
i -
1
E |l t,z (Vf(wiz) = Vhw)| | = orE ZZMJATA
i 1€ By il z 1 9=1

1 bb—1) 1 R

Mini-Batch SGD Converges (continued)

B & (VHwsa) = Vhu)| | =558 |5 = LS ATA, +ZHA "

1€ By 1 i z;éj

Mini-Batch SGD Converges (continued)

1
E -
| By

S (Vi (w i) - Vh(w,)

1€ By

N —b

(N — 1)

E

] & '
NZ 1A
_ 1=1 _

* Compared with SGD, squared error term decreased by a factor of b

Mini-Batch SGD Converges (continued)

* Recall that SGD converged to a noise ball of size

. aM
lim E |[|wr — w*||?] <
T—00 21 — ouft?
* Since mini-batching decreases error term by a factor of b, it will have
M
lim E [|wr — w*]?] < ——
T— 00 (2 — ap?)b

* Noise ball smaller by the same factor!

Advantages of Mini-Batch (reprise)

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* Converges to a smaller noise ball than stochastic gradient descent

alM
lim E —w*?] <
Tooo flwr —wF] < (2 — ap?)b

How to choose the batch size?

* Mini-batching is not a free win

* Narvely, compared with SGD, 1t takes b times as much effort to get a b-times-as-
accurate answer

* But we could have gotten a b-times-as-accurate answer by just running SGD for
b times as many steps with a step size of a/b.

* But 1t still makes sense to run it for systems and statistical reasons
* Mini-batching exposes more parallelism
* Mini-batching lets us estimate statistics about the full gradient more accurately

* Another use case for hyperparameter optimization

Mini-Batch SGD is very widely used

* Including in basically all neural network training

* b = 32 is a typical default value for batch size

* From “Practical Recommendations for Gradient-Based Training of Deep
Architectures,” Bengio 2012.

Another class of technique:
Acceleration and Momentum

How does the step size affect convergence?

* Let’s go back to gradient descent
Lt+1 = Lt — Cka(.’l?t)

* Simplest possible case: a quadratic function

fla) = 507

Step size vs. convergence: graphically

Tiy1 — 0] = [1 = af|z; — 0]

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

convergence rate

0 0.5 1 1.5 2 2.5
step size

What if the curvature is different?

f(x) = 22° Tii1 = ¢ — 4dazy = (1 — da)xy

1.8
1.6
1.4
1.2

0.8

0.6
0.4 —previous f

0.2 —new f

convergence rate

0 0.5 1 1.5 2 2.5 3
step size

Step size vs. curvature

* For these one-dimensional quadratics, how we should set the step size
depends on the curvature

* More curvature = smaller ideal step size

* What about higher-dimensional problems?

* Let’s look at a really simple quadratic that’s just 2 sum of our examples.

L 5

f(xay) — 533 2y2

Simple two dimensional problem

e Gradient descent:

Lt41
Yt+1

1

flz,y) = §$2 + 297

What’s the convergence rater

e [.ook at the worst-case contraction factor of the update

max
L,y

1 — o 0 T
i 0 1—404__3/_
—

Y

= max(|1 — a|, |1 — 4a|)

* Contraction 1s maximum of previous two values.

Convergence of two-dimensional quadratic

= ,/
! %
/7
5 e
a0 e
- Vs
: -
G Ve
o e
) .
© v - - -previous f
,/
---new f

—twO-dimensional

1.5 2 2.5 3

step size

What does this example show?

* We'd like to set the step size larger for dimension with less curvature, and
smaller for the dimension with more curvature.

* But we can’t, because there 1s only a single step-size parameter.

 There’s a trade-off

* Optimal convergence rate 1s substantially worse than what we’d get 1n each
scenario individually — individually we converge in one iteration.

For general quadratics

* For PSD symmetric A, 1

f(x) = iazTAx

* Gradient descent has update step
Lt+1 — Lt — OéAZEt — ([— OéA)SEt

* What does the convergence rate look like in general?

Convergence rate for general quadratics

= max %H (I — Z)\Zu@u;r) X
i=1
> (1= oz)\i)uiu;-rxH

o | v e

= max |1 — a);
1

= max(l — aAmin, ®Amax — 1)

Optimal convergence rate

* Minimize:

* Optimal value occurs when

2

1 — Amin:)\max_1:> —
- - -)\max +)\min

* Optimal rate is

)\max _ >\min

>\max +)\min

max(l — Oé)\min, Oé)\max o 1) —

What attects this optimal rate?

Aax — Amin * Here, K 1s called the condition
rate = number of the matrix A.
>\maX >\min
L)\max/)\min — 1 o —)\max
)\max/)\min)\min
H: —_
o K 4 ' * Problems with larger condition

numbers converge slower.
* Called poorly conditioned.

Poorly conditioned problems

* Intuitively, these are problems that are highly curved in some
directions but flat in others

* Happens pretty often in machine learning
* Measure something unrelated — low curvature in that direction

* Also affects stochastic gradient descent

* How do we deal with this?

Momentum

Motivation

* Can we tell the difference between the curved and flat directions using
information that is already available to the algorithm?

* Idea: in the one-dimensional case, if the gradients are reversing sign,
then the step size 1s too large
* Because we’re over-shooting the optimum

* And if the gradients stay in the same direction, then step size 1s too small

* Can we leverage this to make steps smaller when gradients reverse sign
and larger when gradients are consistently in the same direction?

Polyak Momentum

* Add extra momentum term to gradient descent

Lt+1 — Tt — CVVf(SUt) —+ 5(513‘75 — th_l)

* Intuition: if current gradient step is in same direction as previous step,
then move a little further in that direction.

* And 1if it’s in the opposite direction, move less far.

* Also known as the heavy ball method.

Momentum for 1D Quadratics

* Momentum gradient descent gives

Ti41 = Tt — ATt + B(Tr — Tp—1)

= (1406 —aXN)xy — Bxi_q

Characterizing momentum for 1D quadratics

e Start with 311 = (1 + 8 — aN)xy — Bxi_q

e Trick: let z; = BY/?2,

BV 2o = (14 B — a2z — 8- U D/22,

. 1+ 05— aA
tH1 =
VB

£t — Rt—1

Characterizing momentum (continued)

" Let u—l_I_ﬁ_a)\
2¢/8

* Then we get the simplified characterization

Zi41 = 2UZ¢ — Zt—1

* This is a degree-¢ polynomial in u

Chebyshev Polynomials

e If we initialize such that 2o = 1, 21 = U then these are a special family
of polynomials called the Chebyshev polynomials

Zt41 = 2UZ¢ — Zt—1

e Standard notation:

Tii1(uw) = 2uTy(u) — T 1 (u)

* These polynomials have an important property: for all t

— 1< u<<l=-1<z2z <1

1.5

0

Chebyshev Polynomials

-0.5

0

0.5

1.5

Chebyshev Polynomials

15

1

0.5

0

-0.5

-1

-1.5
-1.5 -1 -0.5 0 0.5

1.5

Chebyshev Polynomials

To(u) = 2u* — 1

e

Chebyshev Polynomials

15 \
1

0.5

-0.5

-1.5
-1.5 -1 -0.5 0 0.5

Chebyshev Polynomials

15

0.5

-0.5

-1.5
-1.5 -1 -0.5 0 0.5

Chebyshev Polynomials

15

0.5

-0.5

-1.5

-1.5 -1 -0.5 0 0.5

Chebyshev Polynomials

TR
Il

-0.5

Characterizing momentum (continued)

* What does this mean for our 1D quadratics?
* Recall that we let T¢ = 575/22%

xe = B2 o - Ty(u)

ot 1—|—B—oz)\>
=p L0 Tt(2\/3

* So
I+ 8- a
< IEE A < 82 e

<273

Consequences of momentum analysis

* Convergence rate depends only on momentum parameter 3

* Not on step size Oor curvature.

* We don’t need to be that precise in setting the step size

* It just needs to be within a window
* Pointed out in “YellowFin and the Art of Momentum Tuning’ by Zhang et. al.

* If we have a multidimensional quadratic problem, the convergence rate
will be the same in all directions

* This is different from the gradient descent case where we had a trade-oft

Choosing the parameters

* How should we set the step size and momentum parameter if we
only have bounds on A ?

1+ 08— al
o : —1]1 < <1
Need: ~ 2\/3 ~
e Suffices to have:
IR o el and L1 P~ GAmin

2B /B

Choosing the parameters (continued)

* Adding both equations:

0 — 2 + 25 — A max — XA min

2V
0=2-+ 25 — A max — XA min

2 + 283
)\max +)\min

O =

Choosing the parameters (continued)

* Subtracting both equations:

1+5_Oé)\min_1_6+a)\max _ 9

Choosing the parameters (continued)

* Combining these results: 0 2+ 20 a(Amax — Amin) _ 2
B)\max +)\min 2\/3
2+ 25 . (>\maX —)\min) — 9
>\max +)\min 2\/3

0_1_2f max_|_)\m1n Iﬁ

max o)\mm

Choosing the parameters (continued)

* Quadratic formula:

VB

K+ 1

kK — 1

K+ 1

-1
K; e

k+ 1

)\max)\min
():1—2\/3A il + 0

max ~ >\min

9
1
\/(li—l— > 1
Kk — 1
\/ 4k
k2 — 2k + 1

2VE (VE=1)T -1

-1
K -

k—1 k-1 VE+1

Gradient Descent versus Momentum

* Recall: gradient descent had a convergence rate of

Kk — 1
k-+ 1

* But with momentum, the optimal rate is
VK +1

* This 1s called convergence at an accelerated rate

Demo

Setting the parameters

* How do we set the momentum in practice for machine learning?
* One method: hyperparameter optimization

* Another method: just set 3 = 0.9
* Works across a range of problems
* Actually quite popular in deep learning

Nesterov momentum

What about more general functions?

* Previous analysis was for quadratics
* Does this work for general convex functions?

* Answer: not in general
* We need to do something slightly different

Nesterov Momentum

* Slightly different rule

Ti11 = Yt — oV f(ye)
Yt+1 = Lt+1 5($t+1 — ﬂi‘t)

* Main difference: separate the momentum state from the point that we are
calculating the gradient at.

Nesterov Momentum Analysis

* Converges at an accelerated rate for ANY convex problem

VR
NG

* Optimal assignment of the parameters:

Nesterov Momentum 1s Also Very Popular

* People use it in practice for deep learning all the time

* Significant speedups in practice

Demo

What about SGD?

* All our above analysis was for gradient descent

* But momentum still produces empirical improvements when used with
stochastic gradient descent

* And we’ll see how in one of the papers we’re reading on Wednesday

Questions?

* Upcoming things
* Paper 1 review due Today
* Next paper presentations on Wednesday

