More Non-Convexity,

Adaptive Learning Rates, and
Algorithms other than SGD

CS6787 Lecture 8 — Fall 2018

Adaptive learning rates

* So far, we’ve looked at update steps that look like
W1 = Wy — @V fr(we)

* Here, the learning rate/step size is fixed a priori for each iteration.
* What if we use a step size that varies depending on the model?

* This is the idea of an adaptive learning rate.

Example: Polyak’s step length

* This 1s an simple step size scheme for gradient descent that works when
the optimal value 1s known.

flwg) — flw*)
|V f(wg)||?

* Can also use this with an estimated optimal value.

X —

Example: Line search

* Idea: just choose the step size that minimizes the objective.

Qp = arg gl>ifolf(wk —aV f(wy))

* Only works well for gradient descent, not SGD.

* Why?
* SGD moves in random directions that don’t always improve the objective

* Doing line search i1s expensive relative to SGD update.

Adaptive methods for SGD

* Several methods exist
* AdaGrad
* AdaDelta
* RMSProp
* Adam

* You’ll see two of these in this Wednesday’s papers

One Non-Convex Case Where We

Can Show Global Convergence Using
Adaptive Learning Rates: PCA

Principal Component Analysis

* Setting: find the dominant eigenvalue-eigenvector pair of a positive
semidefinite symmetric matrix A.

CETAZE A\ U?Aul
U] = arg max | = — =
&1 1y Uy U1

* Many ways to write this problem, e.g. |Bl|y is Frobenius norm

N 2 3
>\]_U1 — arg mxln ||CE.CET L AH% HBHF_;;BZJ

Recall: PCA is Non-Convex

* PCA is not convex in any of its formulations

* Why? Think about the solutions to the problem: u and —u

* Two distinct solutions =2 can’t be convex

* But it turns out that we can still show that with appropriately chosen step
sizes, gradient descent converges globally!

* This 1s one of the easiest non-convex problems, and a good place to start to
understand how a method works on non-convex problems.

Gradient Descent for PCA

* Gradient of the objective 1s

1
f(@) = Flle — All}, V(@) = (22" -
* Gradient descent update step
T
L1 — Lt — O (Q?tl't Lt — A(Et)

Gradient Descent for PCA (continued)

* Choose adaptive step size for parameter : p = 4
1+ nxlz,
* Then we get:
i T n
€ = |1 Tr T+ | 4 Ax
b+l (1+ m:tht t t) ' 1+ nw?a:t !
1
= 14+ nzla) —nzla)z +nAx
1_|_77-r;5r~73t (((Ny t) Ny t) t ™1 t)

Gradient Descent for PCA (continued)

* So we’re left with

1
1+ nxlz,

Lt+1 = ([-+ 7714)3375

* And applying this inductively gives us

T—1

1
zp = (I +nA)" zo H
t=0

1+ nf|xe |

Convergence 1n Direction

* It should be clear that the direction of the iterates converges

e This is the same expression as we get for power iteration!

TR (I +nA)Ezxg
lzkl [[(I +nA)Eol
1 - "
= A T+n) Nuu! | xo
[T+ 1A zo] (2)
1 n

— : 1+ o)) B uul
(I +nA)Ez|] ;(+nAi) " uu; xo

> (4) R uuy @
1> (14) Kusu] o

Convergence in Direction (continued)

* It we look at just one eigendirection:

n 2
(wjzr)® (uj D50 (1+nXi) " ugud mo)

el 300 (14) K @ol|?
(L) (ul)”
= — 5
D g (T4 1)K (u] o)
This is going to 1 NO2K (0T 0)
zZero at a%nea% rate S (_I_ 77 j) (uj xO)Z
unless j = 1. (1 —+ 77)\1)2K ("LL,{ZCQ)

2
(LN o
-\ 1479\ ui xg

Convergence in Magnitude

* Imagine we’ve already converged in direction. Then our update becomes

1
L+ n||z||?

Tt41 = (1 4+ nA1)z:

* Why does this converge?
* If x is large, it will become small in a single step

* If x is small, it will increase slowly by a factor of about (1 + nA1) until it
converges to the optimal value.

Why did this work?

* The PCA objective has no non-optimal local minima

* This means finding a local optimum is as good as solving the problem

f(z) = {llza” — A}, V(2) = (22"~ A)a

* We took advantage of the algebraic properties

* And the fact that we already knew about power iteration
* We used this to choose an adaptive step size seemingly out of nowhere

Stochastic Gradient Descent for PCA

* We can use the same logic to show that a variant of SGD with the same
adaptive step sizes works for PCA

* And we can give an explicit convergence rate

* The proot is long and involved

* With more work, can even show that variants with momentum and
variance reduction also work

e Means we can use the same techniques we are used to for this problem too

Can we generalize these results?

* Difficult to generalize!
* Especially to problems like neural nets that are hard to analyze algebraically

* This PCA objective 1s one of the simplest non-convex problems

* It’s just a degree-4 polynomial

* But these results can give us intuition about how our methods apply to
the non-convex setting
* To understand a method, PCA is a good place to start

Deep Learning as Non-Convex
Optimization

Lots of Interesting Problems are Non-Convex

* Including deep neural networks

* Because of this, we almost always can’t prove convergence or anything
like that when we run backpropagation (SGD) on a deep net

* But can we use intuition from PCA and convex optimization to
understand what could go wrong when we run non-convex
optimization on these complicated problems?

What could go wrong?
We could converge to a bad local minimum

* Problem: we converge to a local minimum which is bad for our task
* Often in a very steep potential well

* One way to debug: re-run the system with different initialization

* Hopetully it will converge to some other local minimum which might be better

* Another way to debug: add extra noise to gradient updates
* Sometimes called “stochastic gradient Langevin dynamics”

* Intuition: extra noise pushes us out of the steep potential well

What could go wrong?
We could converge to a saddle point

* Problem: we converge to a saddle point, which is not locally optimal

* Upside: usually doesn’t happen with plain SGD
* Because noisy gradients push us away from the saddle point
* But can happen with more sophisticated SGD-like algorithms

* One way to debug: find the Hessian and compute a descent direction

What could go wrong?
We get stuck in a region of low gradient magnitude

* Problem: we converge to a region where the gradient’s magnitude is
small, and then stay there for a very long time

* Might not affect asymptotic convergence, but very bad for real systems

* One way to debug: use specialized techniques like batchnorm

* There are many methods for preventing this problem for neural nets

* Another way to debug: design your network so that it doesn’t happen
* Networks using a RELU activation tend to avoid this problem

What could go wrong?
Due to high curvature, we do huge steps and diverge

* Problem: we go to a region where the gradient’s magnitude is very large,
and then we make a series of very large steps and diverge

* Especially bad for real systems using floating point arithmetic

* One way to debug: use adaptive step size
* Like we did for PCA
* Adam (which we’ll discuss on Wednesday) does this sort of thing

* A simple way to debug: just limit the size of the gradient step
* Often called gradient clipping

* But this can lead to the low-gradient-magnitude issue

What could go wrong?
I don’t know how to set my hyperparameters

* Problem: without theory, how on earth am I supposed to set my
hyperparameters?

* We already have discussed the solution: hyperparameter optimization

* All the techniques we discussed apply to the non-convex case.

* To avoid this: just use hyperparameters from folklore

Takeaway

* Non-convex optimization is hard to write theory about

* But it’s just as easy to compute SGD on
* This 1s why we’re seeing a renaissance of empirical computing

* We can use the techniques we have discussed to get speedup here too
* Including adaptive

* We can apply intuition from the convex case and from simple
problems like PCA to learn how these techniques work

Algorithms other than SGD

Machine learning 1s not just SGD

* Once a model is trained, we need to use it to classify new examples
* This inference task is not computed with SGD

* There are other algorithms for optimizing objectives besides SGD
* Stochastic coordinate descent
* Derivative-free optimization

* There are other common tasks, such as sampling from a distribution
* Gibbs sampling and other Markov chain Monte Carlo methods
* And we sometimes use this together with SGD =2 called contrastive divergence

Why understand these algorithms?

* They represent a significant fraction ot machine learning computations
* Inference in particular is huge

* You may want to use them instead of SGD

* But you don’t want to suddenly pay a computational penalty for doing so because
you don’t know how to make them fast

* Intuition from SGD can be used to make these algorithms faster too

* And vice-versa

Inference

Inference

* Suppose that our training loss function looks like

Zl (w;), yi)

* Inference 1s the problem of computing the prediction

y(w; ;)

How important is inferencer

* Train once, infer many times

* Many production machine learning systems just do inference

* Image recognition, voice recognition, translation

e All are just applications ot inference once they’re trained

* Need to get responses to users quickly

* On the web, users won’t wait motre than a second

Inference on linear models

* Computational cost: relatively low

* Just a matrix-vector multiply

* But still can be more costly in some settings

* For example, if we need to compute a random kernel feature map
* What is the cost of this?

* Which methods can we use to speed up inference in this setting?

Inference on neural networks

* Computational cost: relatively high

* Several matrix-vector multiplies and non-linear elements

* Which methods can we use to speed up inference in this setting?

* Compression
* Find an easier-to-compute network with similar accuracy by fine-tuning

e We’ll see this in more detail later in the course.

Other techniques for speeding up inference

* Train a fast model, and run it most of the time

* If it’s uncertain, then run a more accurate, slower model

* For video and time-series data, re-use some of the computation from
previous frames
* For example, only update some of the activations in the network at each frame
* Or have a more-heavyweight network run less frequently

* Rests on the notion that the objects in the scene do not change frequently in
most video streams

Other Techniques for Training,
Besides SGD

Coordinate Descent

* Start with objective

minimize: f(x1, £2,...,Ty,)
* Choose a random index i, and update

r; = argmin f(x1,22,...,Ti, ..., Tp)
&L

* And repeat in a loop

Variants

* Coordinate descent with derivative and step size

* Sometimes called “stochastic coordinate descent”

Lt1,0 = Lt5 — O - 0T (wt,la L2y .- 7ajt,n)
1

* The same thing, but with a gradient estimate rather than the full gradient.

* How do these compare to SGD?

Derivative Free Optimization (DFO)

* Optimization methods that don’t require differentiation
* Basic coordinate descent 1s actually an example of this

* Another example: for normally distributed ¢

flze +o€) — flae —o€)
20

L+l — Lt — &

* Applications?

Another Task: Sampling

Focus problem for this setting:
Statistical Inference

* Major class of machine learning applications
* Goal: draw conclusions from data using a statistical model

* Formally: find marginal distribution of unobserved variables given observations

* Example: decide whether a coin is biased from a series of flips

* Applications: LDA, recommender systems, text extraction, data cleaning,
data integration etc.

Popular algorithms used for statistical inference
at scale

* Markov-chain Monte Carlo methods (MCMC)
* Gibbs sampling
* Metropolis-Hastings
* Stochastic gradient Langevin dynamics
* Hamiltonian Monte Carlo

e Variational inference

* Infer by solving an optimization problem — can use many of the same
techniques we have discussed in class

Graphical models

* A graphical way to describe a probability distribution

* Common in machine learning applications
* Especially for applications that deal with uncertainty

* Useful for doing statistical inference at scale

* Because we can leverage techniques for computing on large graphs

What types ot inference exist herer?

* Maximum-a-posteriort (MAP) inference
* Find the state with the highest probability
* Often reduces to an optimization problem
* What is the most likely state of the world?

* Marginal inference
* Compute the marginal distributions of some variables
* What does our model of the world tell us about this object or event?

What 1s Gibbs Sampling?

Algorithm 1 Gibbs sampling™ /~ ~

B = =

(Compute its conditional

Require: Variables z; for 1 < distribution given the

A
1 Output the current — other variables.
state as a sample. »ling uniformiy-._ iad,...,Np
T,] s umiformly from P, (x Px{lw,n}\{s})
FaSit e \\fr’ ~

e Update the variable by

— sampling from its

conditional distribution.

N /

Learning on graphical models

* Contrastive divergence
* SGD on top of Gibbs sampling

* The de facto way of training
* Restricted boltzmann machines (RBM)

* Deep belief networks (DBN)
* Knowledge-base construction (KBC) applications

What do all these algorithms look like?
Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

—_——

Repeat:
same structure

1. Pick a data point at random
same systems
— :
2. Update the model properties
3. Iterate same techniques

Questions?

* Upcoming things
* Project proposals due today
* Paper Presentation #6a and #6b on Wednesday

* On adaptive learning rate methods

