More Non-Convexity, Adaptive Learning Rates, and Algorithms other than SGD

CS6787 Lecture 8 — Fall 2018

Adaptive learning rates

• So far, we've looked at update steps that look like

$$w_{t+1} = w_t - \alpha_t \nabla f_t(w_t)$$

• Here, the learning rate/step size is fixed a priori for each iteration.

• What if we use a step size that varies depending on the model?

• This is the idea of an adaptive learning rate.

Example: Polyak's step length

• This is an simple step size scheme for gradient descent that works when the optimal value is known.

$$\alpha_k = \frac{f(w_k) - f(w^*)}{\|\nabla f(w_k)\|^2}$$

• Can also use this with an estimated optimal value.

Example: Line search

• Idea: just choose the step size that minimizes the objective.

$$\alpha_k = \arg\min_{\alpha > 0} f(w_k - \alpha \nabla f(w_k))$$

• Only works well for gradient descent, not SGD.

- Why?
 - SGD moves in random directions that don't always improve the objective
 - Doing line search is expensive relative to SGD update.

Adaptive methods for SGD

- Several methods exist
 - AdaGrad
 - AdaDelta
 - RMSProp
 - Adam
- You'll see two of these in this Wednesday's papers

One Non-Convex Case Where We Can Show Global Convergence Using Adaptive Learning Rates: PCA

Principal Component Analysis

• Setting: find the dominant **eigenvalue-eigenvector pair** of a positive semidefinite symmetric matrix **A**.

$$u_1 = \arg\max_{x} \frac{x^T A x}{x^T x} \qquad \lambda_1 = \frac{u_1^T A u_1}{u_1^T u_1}$$

• Many ways to write this problem, e.g.

$$\sqrt{\lambda_1}u_1 = \arg\min_x \|xx^T - A\|_F^2$$

 $||B||_F$ is Frobenius norm

$$||B||_F^2 = \sum_{i} \sum_{j} B_{i,j}^2$$

Recall: PCA is Non-Convex

- PCA is **not convex** in any of its formulations
- Why? Think about the solutions to the problem: u and -u
 - Two distinct solutions \rightarrow can't be convex
- But it turns out that we can still show that with appropriately chosen step sizes, gradient descent converges globally!
 - This is one of the easiest non-convex problems, and a good place to start to understand how a method works on non-convex problems.

Gradient Descent for PCA

• Gradient of the objective is

$$f(x) = \frac{1}{4} ||xx^T - A||_F^2, \, \nabla f(x) = (xx^T - A)x$$

• Gradient descent update step

$$x_{t+1} = x_t - \alpha_t \left(x_t x_t^T x_t - A x_t \right)$$

Gradient Descent for PCA (continued)

• Choose adaptive step size for parameter η :

$$\alpha_t = \frac{\eta}{1 + \eta x_t^T x_t}$$

• Then we get:

$$x_{t+1} = \left(1 - \frac{\eta}{1 + \eta x_t^T x_t} x_t^T x_t\right) x_t + \frac{\eta}{1 + \eta x_t^T x_t} A x_t$$

$$= \frac{1}{1 + \eta x_t^T x_t} \left(\left((1 + \eta x_t^T x_t) - \eta x_t^T x_t \right) x_t + \eta A x_t \right)$$

$$= \frac{1}{1 + \eta x_t^T x_t} \left(x_t + \eta A x_t \right)$$

Gradient Descent for PCA (continued)

• So we're left with

$$x_{t+1} = \frac{1}{1 + \eta x_t^T x_t} (I + \eta A) x_t$$

• And applying this inductively gives us

$$x_T = (I + \eta A)^T x_0 \prod_{t=0}^{T-1} \frac{1}{1 + \eta \|x_t\|^2}$$

Convergence in Direction

- It should be clear that the direction of the iterates converges
 - This is the same expression as we get for power iteration!

$$\frac{x_K}{\|x_K\|} = \frac{(I + \eta A)^K x_0}{\|(I + \eta A)^K x_0\|}$$

$$= \frac{1}{\|(I + \eta A)^K x_0\|} \cdot \left(I + \eta \sum_{i=1}^n \lambda_i u_i u_i^T\right)^K x_0$$

$$= \frac{1}{\|(I + \eta A)^K x_0\|} \cdot \sum_{i=1}^n (1 + \eta \lambda_i)^K u_i u_i^T x_0$$

$$= \frac{\sum_{i=1}^n (1 + \eta \lambda_i)^K u_i u_i^T x_0}{\|\sum_{i=1}^n (1 + \eta \lambda_i)^K u_i u_i^T x_0\|}$$

Convergence in Direction (continued)

• If we look at just one eigendirection:

$$\frac{(u_{j}^{T}x_{K})^{2}}{\|x_{K}\|^{2}} = \frac{\left(u_{j}^{T}\sum_{i=1}^{n}(1+\eta\lambda_{i})^{K}u_{i}u_{i}^{T}x_{0}\right)^{2}}{\|\sum_{i=1}^{n}(1+\eta\lambda_{i})^{K}u_{i}u_{i}^{T}x_{0}\|^{2}}$$

$$= \frac{(1+\eta\lambda_{j})^{2K}\left(u_{j}^{T}x_{0}\right)^{2}}{\sum_{i=1}^{n}(1+\eta\lambda_{i})^{2K}\left(u_{i}^{T}x_{0}\right)^{2}}$$
This is going to zero at a linear rate unless j = 1.
$$\leq \frac{(1+\eta\lambda_{j})^{2K}\left(u_{j}^{T}x_{0}\right)^{2}}{(1+\eta\lambda_{1})^{2K}\left(u_{1}^{T}x_{0}\right)^{2}}$$

$$= \left(\frac{1+\eta\lambda_{j}}{1+\eta\lambda_{1}}\right)^{2K} \cdot \left(\frac{u_{j}^{T}x_{0}}{u_{1}^{T}x_{0}}\right)^{2}$$

Convergence in Magnitude

• Imagine we've already converged in direction. Then our update becomes

$$x_{t+1} = \frac{1}{1 + \eta \|x_t\|^2} (1 + \eta \lambda_1) x_t$$

• Why does this converge?

- If x is large, it will become small in a single step
- If **x** is small, it will increase slowly by a factor of about $(1 + \eta \lambda_1)$ until it converges to the optimal value.

Why did this work?

- The PCA objective has no non-optimal local minima
 - This means finding a local optimum is as good as solving the problem

$$f(x) = \frac{1}{4} ||xx^T - A||_F^2, \ \nabla f(x) = (xx^T - A)x$$

- We took advantage of the algebraic properties
 - And the fact that we already knew about power iteration
 - We used this to choose an adaptive step size seemingly out of nowhere

Stochastic Gradient Descent for PCA

- We can use the same logic to show that a variant of SGD with the same adaptive step sizes works for PCA
 - And we can give an explicit convergence rate
- The proof is long and involved

- With more work, can even show that variants with momentum and variance reduction also work
 - Means we can use the same techniques we are used to for this problem too

Can we generalize these results?

- Difficult to generalize!
 - Especially to problems like neural nets that are hard to analyze algebraically

- This PCA objective is one of the simplest non-convex problems
 - It's just a degree-4 polynomial
- But these results can **give us intuition** about how our methods apply to the non-convex setting
 - To understand a method, PCA is a good place to start

Deep Learning as Non-Convex Optimization

Or, "what could go wrong with my non-convex learning algorithm?"

Lots of Interesting Problems are Non-Convex

• Including deep neural networks

• Because of this, we almost always can't prove convergence or anything like that when we run backpropagation (SGD) on a deep net

• But can we use intuition from PCA and convex optimization to understand what could go wrong when we run non-convex optimization on these complicated problems?

What could go wrong? We could converge to a bad local minimum

- Problem: we converge to a local minimum which is bad for our task
 - Often in a very steep potential well
- One way to debug: re-run the system with different initialization
 - Hopefully it will converge to some other local minimum which might be better
- Another way to debug: add extra noise to gradient updates
 - Sometimes called "stochastic gradient Langevin dynamics"
 - Intuition: extra noise pushes us out of the steep potential well

What could go wrong? We could converge to a saddle point

- Problem: we converge to a saddle point, which is not locally optimal
- Upside: usually doesn't happen with plain SGD
 - Because noisy gradients push us away from the saddle point
 - But can happen with more sophisticated SGD-like algorithms
- One way to debug: find the **Hessian** and compute a descent direction

What could go wrong? We get stuck in a region of low gradient magnitude

- Problem: we converge to a region where the gradient's magnitude is small, and then stay there for a very long time
 - Might not affect asymptotic convergence, but very bad for real systems
- One way to debug: use specialized techniques like batchnorm
 - There are many methods for preventing this problem for neural nets
- Another way to debug: design your network so that it doesn't happen
 - Networks using a **RELU activation** tend to avoid this problem

What could go wrong?

Due to high curvature, we do huge steps and diverge

- Problem: we go to a region where the gradient's magnitude is very large, and then we make a series of very large steps and diverge
 - Especially bad for real systems using floating point arithmetic
- One way to debug: use adaptive step size
 - Like we did for PCA
 - Adam (which we'll discuss on Wednesday) does this sort of thing
- A simple way to debug: just limit the size of the gradient step
 - Often called gradient clipping
 - But this can lead to the low-gradient-magnitude issue

What could go wrong? I don't know how to set my hyperparameters

- Problem: without theory, how on earth am I supposed to set my hyperparameters?
- We already have discussed the solution: hyperparameter optimization
 - All the techniques we discussed apply to the non-convex case.
- To avoid this: just use hyperparameters from folklore

Takeaway

- Non-convex optimization is hard to write theory about
- But it's just as easy to compute SGD on
 - This is why we're seeing a renaissance of empirical computing
- We can use the techniques we have discussed to get speedup here too
 - Including adaptive
- We can apply intuition from the convex case and from simple problems like PCA to learn how these techniques work

Algorithms other than SGD

Machine learning is not just SGD

- Once a model is trained, we need to use it to classify new examples
 - This inference task is not computed with SGD
- There are other algorithms for optimizing objectives besides SGD
 - Stochastic coordinate descent
 - Derivative-free optimization
- There are other common tasks, such as sampling from a distribution
 - Gibbs sampling and other Markov chain Monte Carlo methods
 - And we sometimes use this together with SGD \rightarrow called **contrastive divergence**

Why understand these algorithms?

- They represent a significant fraction of machine learning computations
 - Inference in particular is huge
- You may want to use them instead of SGD
 - But you don't want to suddenly pay a computational penalty for doing so because you don't know how to make them fast
- Intuition from SGD can be used to make these algorithms faster too
 - And vice-versa

Inference

Inference

• Suppose that our training loss function looks like

$$f(w) = \frac{1}{N} \sum_{i=1}^{n} l(\hat{y}(w; x_i), y_i)$$

• Inference is the problem of computing the prediction

$$\hat{y}(w;x_i)$$

How important is inference?

- Train once, infer many times
 - Many production machine learning systems just do inference
- Image recognition, voice recognition, translation
 - All are just applications of inference once they're trained
- Need to get responses to users quickly
 - On the web, users won't wait more than a second

Inference on linear models

- Computational cost: relatively low
 - Just a matrix-vector multiply
- But still can be more costly in some settings
 - For example, if we need to compute a random kernel feature map
 - What is the cost of this?
- Which methods can we use to speed up inference in this setting?

Inference on neural networks

- Computational cost: relatively high
 - Several matrix-vector multiplies and non-linear elements
- Which methods can we use to speed up inference in this setting?
- Compression
 - Find an easier-to-compute network with similar accuracy by fine-tuning
 - We'll see this in more detail later in the course.

Other techniques for speeding up inference

- Train a fast model, and run it most of the time
 - If it's uncertain, then run a more accurate, slower model
- For video and time-series data, **re-use some of the computation** from previous frames
 - For example, only update some of the activations in the network at each frame
 - Or have a more-heavyweight network run less frequently
 - Rests on the notion that the **objects in the scene do not change frequently** in most video streams

Other Techniques for Training, Besides SGD

Coordinate Descent

• Start with objective

minimize:
$$f(x_1, x_2, \ldots, x_n)$$

• Choose a random index i, and update

$$x_i = \arg\min_{\hat{x}_i} f(x_1, x_2, \dots, \hat{x}_i, \dots, x_n)$$

• And repeat in a loop

Variants

- Coordinate descent with derivative and step size
 - Sometimes called "stochastic coordinate descent"

$$x_{t+1,i} = x_{t,i} - \alpha_t \cdot \frac{\partial f}{\partial x_i}(x_{t,1}, x_{t,2}, \dots, x_{t,n})$$

• The same thing, but with a gradient estimate rather than the full gradient.

How do these compare to SGD?

Derivative Free Optimization (DFO)

- Optimization methods that don't require differentiation
- Basic coordinate descent is actually an example of this

• Another example: for normally distributed ε

$$x_{t+1} = x_t - \alpha \frac{f(x_t + \sigma \epsilon) - f(x_t - \sigma \epsilon)}{2\sigma} \epsilon$$

Applications?

Another Task: Sampling

Focus problem for this setting: Statistical Inference

- Major class of machine learning applications
 - Goal: draw conclusions from data using a statistical model
 - Formally: find marginal distribution of unobserved variables given observations
- Example: decide whether a coin is biased from a series of flips
- Applications: LDA, recommender systems, text extraction, data cleaning, data integration etc.

Popular algorithms used for statistical inference at scale

- Markov-chain Monte Carlo methods (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
 - Stochastic gradient Langevin dynamics
 - Hamiltonian Monte Carlo
- Variational inference
 - Infer by solving an optimization problem can use many of the same techniques we have discussed in class

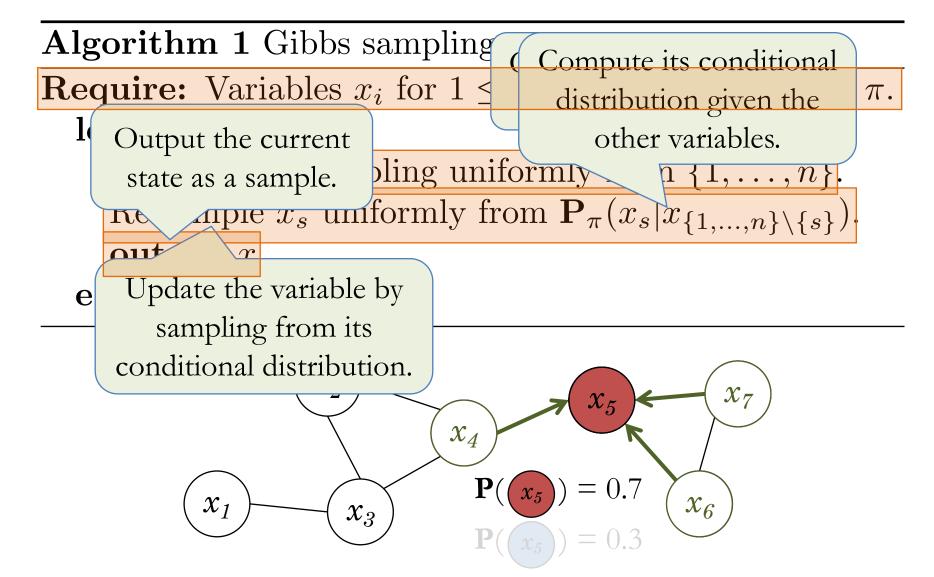
Graphical models

- A graphical way to describe a probability distribution
- Common in machine learning applications
 - Especially for applications that deal with uncertainty
- Useful for doing statistical inference at scale
 - Because we can leverage techniques for computing on large graphs

What types of inference exist here?

- Maximum-a-posteriori (MAP) inference
 - Find the state with the highest probability
 - Often reduces to an optimization problem
 - What is the most likely state of the world?
- Marginal inference
 - Compute the marginal distributions of some variables
 - What does our model of the world tell us about this object or event?

What is Gibbs Sampling?



Learning on graphical models

- Contrastive divergence
 - SGD on top of Gibbs sampling
- The de facto way of training
 - Restricted boltzmann machines (RBM)
 - Deep belief networks (DBN)
 - Knowledge-base construction (KBC) applications

What do all these algorithms look like? Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

1. Pick a data point at random

2. Update the model

3. Iterate

same structure

same systems properties

same techniques

Questions?

- Upcoming things
 - Project proposals due today
 - Paper Presentation #6a and #6b on Wednesday
 - On adaptive learning rate methods