
More Non-Convexity,
Adaptive Learning Rates, and
Algorithms other than SGD

CS6787 Lecture 8 — Fall 2018

Adaptive learning rates

• So far, we’ve looked at update steps that look like

• Here, the learning rate/step size is fixed a priori for each iteration.

• What if we use a step size that varies depending on the model?

• This is the idea of an adaptive learning rate.

Example: Polyak’s step length

• This is an simple step size scheme for gradient descent that works when
the optimal value is known.

• Can also use this with an estimated optimal value.

Example: Line search

• Idea: just choose the step size that minimizes the objective.

• Only works well for gradient descent, not SGD.

• Why?
• SGD moves in random directions that don’t always improve the objective
• Doing line search is expensive relative to SGD update.

Adaptive methods for SGD

• Several methods exist
• AdaGrad
• AdaDelta
• RMSProp
• Adam

• You’ll see two of these in this Wednesday’s papers

One Non-Convex Case Where We
Can Show Global Convergence Using
Adaptive Learning Rates: PCA

Principal Component Analysis

• Setting: find the dominant eigenvalue-eigenvector pair of a positive
semidefinite symmetric matrix A.

• Many ways to write this problem, e.g.

u1 = argmax
x

xTAx

xTx

p
�1u1 = argmin

x
kxxT �Ak2F

kBkF is Frobenius norm

kBk2F =
X

i

X

j

B2
i,j

Recall: PCA is Non-Convex

• PCA is not convex in any of its formulations

• Why? Think about the solutions to the problem: u and –u
• Two distinct solutions à can’t be convex

• But it turns out that we can still show that with appropriately chosen step
sizes, gradient descent converges globally!
• This is one of the easiest non-convex problems, and a good place to start to

understand how a method works on non-convex problems.

Gradient Descent for PCA

• Gradient of the objective is

• Gradient descent update step

f(x) =
1

4
kxxT �Ak2F , rf(x) = (xxT �A)x

xt+1 = xt � ↵t

�
xtx

T
t xt �Axt

�

= (1� ↵tx
T
t xt)xt + ↵tAxt

Gradient Descent for PCA (continued)

• Choose adaptive step size for parameter η:

• Then we get:

↵t =
⌘

1 + ⌘xT
t xt

xt+1 =

✓
1� ⌘

1 + ⌘xT
t xt

xT
t xt

◆
xt +

⌘

1 + ⌘xT
t xt

Axt

=
1

1 + ⌘xT
t xt

��
(1 + ⌘xT

t xt)� ⌘xT
t xt

�
xt + ⌘Axt

�

=
1

1 + ⌘xT
t xt

(xt + ⌘Axt)

Gradient Descent for PCA (continued)

• So we’re left with

• And applying this inductively gives us

xt+1 =
1

1 + ⌘xT
t xt

(I + ⌘A)xt

xT = (I + ⌘A)Tx0

T�1Y

t=0

1

1 + ⌘kxtk2

Convergence in Direction

• It should be clear that the direction of the iterates converges
• This is the same expression as we get for power iteration!

Convergence in Direction (continued)

• If we look at just one eigendirection:

This is going to
zero at a linear rate

unless j = 1.

Convergence in Magnitude

• Imagine we’ve already converged in direction. Then our update becomes

• Why does this converge?
• If x is large, it will become small in a single step
• If x is small, it will increase slowly by a factor of about until it

converges to the optimal value.

xt+1 =
1

1 + ⌘kxtk2
(1 + ⌘�1)xt) kxt+1k =

1 + ⌘�1

1 + ⌘kxtk2
kxtk

(1 + ⌘�1)

Why did this work?

• The PCA objective has no non-optimal local minima
• This means finding a local optimum is as good as solving the problem

• We took advantage of the algebraic properties
• And the fact that we already knew about power iteration
• We used this to choose an adaptive step size seemingly out of nowhere

f(x) =
1

4
kxxT �Ak2F , rf(x) = (xxT �A)x

Stochastic Gradient Descent for PCA

• We can use the same logic to show that a variant of SGD with the same
adaptive step sizes works for PCA
• And we can give an explicit convergence rate

• The proof is long and involved

• With more work, can even show that variants with momentum and
variance reduction also work
• Means we can use the same techniques we are used to for this problem too

Can we generalize these results?

• Difficult to generalize!
• Especially to problems like neural nets that are hard to analyze algebraically

• This PCA objective is one of the simplest non-convex problems
• It’s just a degree-4 polynomial

• But these results can give us intuition about how our methods apply to
the non-convex setting
• To understand a method, PCA is a good place to start

Deep Learning as Non-Convex
Optimization
Or, “what could go wrong with my non-convex learning algorithm?”

Lots of Interesting Problems are Non-Convex

• Including deep neural networks

• Because of this, we almost always can’t prove convergence or anything
like that when we run backpropagation (SGD) on a deep net

• But can we use intuition from PCA and convex optimization to
understand what could go wrong when we run non-convex
optimization on these complicated problems?

What could go wrong?
We could converge to a bad local minimum
• Problem: we converge to a local minimum which is bad for our task
• Often in a very steep potential well

• One way to debug: re-run the system with different initialization
• Hopefully it will converge to some other local minimum which might be better

• Another way to debug: add extra noise to gradient updates
• Sometimes called “stochastic gradient Langevin dynamics”
• Intuition: extra noise pushes us out of the steep potential well

What could go wrong?
We could converge to a saddle point
• Problem: we converge to a saddle point, which is not locally optimal

• Upside: usually doesn’t happen with plain SGD
• Because noisy gradients push us away from the saddle point
• But can happen with more sophisticated SGD-like algorithms

• One way to debug: find the Hessian and compute a descent direction

What could go wrong?
We get stuck in a region of low gradient magnitude
• Problem: we converge to a region where the gradient’s magnitude is

small, and then stay there for a very long time
• Might not affect asymptotic convergence, but very bad for real systems

• One way to debug: use specialized techniques like batchnorm
• There are many methods for preventing this problem for neural nets

• Another way to debug: design your network so that it doesn’t happen
• Networks using a RELU activation tend to avoid this problem

What could go wrong?
Due to high curvature, we do huge steps and diverge
• Problem: we go to a region where the gradient’s magnitude is very large,

and then we make a series of very large steps and diverge
• Especially bad for real systems using floating point arithmetic

• One way to debug: use adaptive step size
• Like we did for PCA
• Adam (which we’ll discuss on Wednesday) does this sort of thing

• A simple way to debug: just limit the size of the gradient step
• Often called gradient clipping
• But this can lead to the low-gradient-magnitude issue

What could go wrong?
I don’t know how to set my hyperparameters
• Problem: without theory, how on earth am I supposed to set my

hyperparameters?

• We already have discussed the solution: hyperparameter optimization
• All the techniques we discussed apply to the non-convex case.

• To avoid this: just use hyperparameters from folklore

Takeaway

• Non-convex optimization is hard to write theory about

• But it’s just as easy to compute SGD on
• This is why we’re seeing a renaissance of empirical computing

• We can use the techniques we have discussed to get speedup here too
• Including adaptive

• We can apply intuition from the convex case and from simple
problems like PCA to learn how these techniques work

Algorithms other than SGD

Machine learning is not just SGD

• Once a model is trained, we need to use it to classify new examples
• This inference task is not computed with SGD

• There are other algorithms for optimizing objectives besides SGD
• Stochastic coordinate descent
• Derivative-free optimization

• There are other common tasks, such as sampling from a distribution
• Gibbs sampling and other Markov chain Monte Carlo methods
• And we sometimes use this together with SGD à called contrastive divergence

Why understand these algorithms?

• They represent a significant fraction of machine learning computations
• Inference in particular is huge

• You may want to use them instead of SGD
• But you don’t want to suddenly pay a computational penalty for doing so because

you don’t know how to make them fast

• Intuition from SGD can be used to make these algorithms faster too
• And vice-versa

Inference

Inference

• Suppose that our training loss function looks like

• Inference is the problem of computing the prediction

f(w) =
1

N

nX

i=1

l(ŷ(w;xi), yi)

ŷ(w;xi)

How important is inference?

• Train once, infer many times
• Many production machine learning systems just do inference

• Image recognition, voice recognition, translation
• All are just applications of inference once they’re trained

• Need to get responses to users quickly
• On the web, users won’t wait more than a second

Inference on linear models

• Computational cost: relatively low
• Just a matrix-vector multiply

• But still can be more costly in some settings
• For example, if we need to compute a random kernel feature map
• What is the cost of this?

• Which methods can we use to speed up inference in this setting?

Inference on neural networks

• Computational cost: relatively high
• Several matrix-vector multiplies and non-linear elements

• Which methods can we use to speed up inference in this setting?

• Compression
• Find an easier-to-compute network with similar accuracy by fine-tuning
• We’ll see this in more detail later in the course.

Other techniques for speeding up inference

• Train a fast model, and run it most of the time
• If it’s uncertain, then run a more accurate, slower model

• For video and time-series data, re-use some of the computation from
previous frames
• For example, only update some of the activations in the network at each frame
• Or have a more-heavyweight network run less frequently
• Rests on the notion that the objects in the scene do not change frequently in

most video streams

Other Techniques for Training,
Besides SGD

Coordinate Descent

• Start with objective

• Choose a random index i, and update

• And repeat in a loop

minimize:f(x1, x2, . . . , xn)

Variants

• Coordinate descent with derivative and step size
• Sometimes called “stochastic coordinate descent”

• The same thing, but with a gradient estimate rather than the full gradient.

• How do these compare to SGD?

Derivative Free Optimization (DFO)

• Optimization methods that don’t require differentiation

• Basic coordinate descent is actually an example of this

• Another example: for normally distributed ε

• Applications?

xt+1 = xt � ↵
f(xt + �✏)� f(xt � �✏)

2�
✏

Another Task: Sampling

Focus problem for this setting:
Statistical Inference
• Major class of machine learning applications
• Goal: draw conclusions from data using a statistical model
• Formally: find marginal distribution of unobserved variables given observations

• Example: decide whether a coin is biased from a series of flips

• Applications: LDA, recommender systems, text extraction, data cleaning,
data integration etc.

Popular algorithms used for statistical inference
at scale
• Markov-chain Monte Carlo methods (MCMC)
• Gibbs sampling
• Metropolis-Hastings
• Stochastic gradient Langevin dynamics
• Hamiltonian Monte Carlo

• Variational inference
• Infer by solving an optimization problem — can use many of the same

techniques we have discussed in class

Graphical models

• A graphical way to describe a probability distribution

• Common in machine learning applications
• Especially for applications that deal with uncertainty

• Useful for doing statistical inference at scale
• Because we can leverage techniques for computing on large graphs

What types of inference exist here?

• Maximum-a-posteriori (MAP) inference
• Find the state with the highest probability
• Often reduces to an optimization problem
• What is the most likely state of the world?

• Marginal inference
• Compute the marginal distributions of some variables
• What does our model of the world tell us about this object or event?

x1

x2

x3

x4
x5 x7

x6

Algorithm 1 Gibbs sampling

Require: Variables xi for 1  i  n, and distribution ⇡.
loop

Choose s by sampling uniformly from {1, . . . , n}.
Re-sample xs uniformly from P⇡(xs|x{1,...,n}\{s}).
output x

end loop

What is Gibbs Sampling?
Choose a variable to
update at random.

Update the variable by
sampling from its

conditional distribution.

Compute its conditional
distribution given the

other variables.Output the current
state as a sample.

x4

x6

x7

P() = 0.7

P() = 0.3
x5

x5

x5x5

Learning on graphical models

• Contrastive divergence
• SGD on top of Gibbs sampling

• The de facto way of training
• Restricted boltzmann machines (RBM)
• Deep belief networks (DBN)
• Knowledge-base construction (KBC) applications

What do all these algorithms look like?
Stochastic Iterative Algorithms
Given an immutable input dataset and a model we want to output.

Repeat:

1. Pick a data point at random

2. Update the model

3. Iterate

same structure

same systems
properties

same techniques

Questions?

• Upcoming things
• Project proposals due today
• Paper Presentation #6a and #6b on Wednesday

• On adaptive learning rate methods

