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Review — We’ve covered many methods

• Stochastic gradient descent
• Mini-batching
• Momentum
• Variance reduction

• Nice convergence proofs that give us a rate

• But only for convex problems!



Non-Convex Problems

• Anything that’s not convex



What makes non-convex optimization hard?

• Potentially many local minima

• Saddle points

• Very flat regions

• Widely varying curvature

Source: 
https://commons.wikimedia.org/wiki/File:Saddle_point.svg



But is it actually that hard?

• Yes, many classes of  non-convex optimization are at least NP-hard
• Can encode most problems as non-convex optimization problems

• Example: subset sum problem
• Given a set of  integers, is there a non-empty subset whose sum is zero?
• Known to be NP-complete.

• How do we encode this as an optimization problem?



Subset sum as non-convex optimization

• Let a1, a2, …, an be the input integers

• Let x1, x2, …, xn be 1 if  ai is in the subset, and 0 otherwise

• Objective:

• What is the optimum if  subset sum returns true? What if  it’s false?
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Non-convex problems can be harder than NP

• We can use the same trick to encode any Diophantine equation
• Let p be an integer polynomial in n variables, then solve 

• What is the optimum if  the Diophantine equation has a solution? 
What if  it doesn’t have a solution?

• Matiyasevich theorem: Diophantine equations undecidable in general



So non-convex optimization is pretty hard

• There can’t be a general algorithm to solve it efficiently in all cases
• Or at all!

• Downsides: theoretical guarantees are weak or nonexistent
• Depending on the application
• There’s usually no theoretical recipe for setting hyperparameters

• Upside: an endless array of  problems to try to solve better
• And gain theoretical insight about
• And improve the performance of  implementations



Examples of  non-convex problems

• Matrix completion, principle component analysis

• Low-rank models and tensor decomposition

• Maximum likelihood estimation with hidden variables
• Usually non-convex

• The big one: deep neural networks



Why are neural networks non-convex?

• They’re often made of  convex parts!
• This by itself  would be convex.

• Composition of  convex functions is not convex
• So deep neural networks also aren’t convex
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Why do neural nets need to be non-convex?

• Neural networks are universal function approximators
• With enough neurons, they can learn to approximate any function arbitrarily well

• To do this, they need to be able to approximate non-convex functions
• Convex functions can’t approximate non-convex ones well.

• Neural nets also have many symmetric configurations
• For example, exchanging intermediate neurons
• This symmetry means they can’t be convex. Why?



How to solve non-convex problems?

• Can use many of  the same techniques as before
• Stochastic gradient descent
• Mini-batching
• SVRG
• Momentum

• There are also specialized methods for solving non-convex problems
• Alternating minimization methods
• Branch-and-bound methods
• These generally aren’t very popular for machine learning problems



Varieties of  theoretical convergence results

• Convergence to a stationary point

• Convergence to a local minimum

• Local convergence to the global minimum

• Global convergence to the global minimum



Non-convex
Stochastic Gradient Descent



Stochastic Gradient Descent

• The update rule is the same for non-convex functions

• Same intuition of  moving in a direction that lowers objective

• Doesn’t necessarily go towards optimum
• Even in expectation

wt+1 = wt � ↵trf̃t(wt)



Non-convex SGD: A Systems Perspective

• It’s exactly the same as the convex case!

• The hardware doesn’t care whether our gradients are from a convex 
function or not

• This means that all our intuition about computational efficiency from the 
convex case directly applies to the non-convex case

• But does our intuition about statistical efficiency also apply?



When can we say SGD converges?

• First, we need to decide what type of  convergence we want to show
• Here I’ll just show convergence to a stationary point, the weakest type

• Assumptions:
• Second-differentiable objective

• Lipschitz-continuous gradients

• Noise has bounded variance

• But no convexity assumption!
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Convergence of  Non-Convex SGD

• Start with the update rule:

• At the next time step, by Taylor’s theorem, the objective will be
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f(wt+1) = f(wt � ↵trf̃t(wt))

= f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
t

2
rf̃t(wt)

Tr2f(yt)rf̃t(wt)

 f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
tL

2

���rf̃t(wt)
���
2

f(wt+1) = f(wt � ↵trf̃t(wt))

= f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
t

2
rf̃t(wt)

Tr2f(yt)rf̃t(wt)

 f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
tL

2

���rf̃t(wt)
���
2



Convergence (continued)

• Taking the expected value
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Convergence (continued)

• So now we know how the expected value of  the objective evolves.

• If  we set ⍺ small enough that 1 - ⍺L/2 > 1/2, then
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Convergence (continued)

• Now taking the full expectation,

• And summing up over an epoch of  length T
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Convergence (continued)

• Now we need to decide how to set the step size ⍺t
• Let’s just set it to be decreasing like we did in the convex setting

• So our bound on the objective becomes
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Convergence (continued)

• Rearranging the terms,
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Now, we’re kinda stuck

• How do we use the bound on this term to say something useful?

• Idea: rather than outputting wT, instead output some randomly chosen 
wi from the history.
• You might recall this trick from the proof  in the SVRG paper.
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Using our randomly chosen output

• So the expected value of  the gradient at this point is

Let zT = wt with probability 1
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Convergence (continued)

• Now we can continue to bound this with
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Convergence (continued)

• This means that for some fixed constant C

• And so in the limit
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Convergence Takeaways

• So even non-convex SGD converges!
• In the sense of  getting to points where the gradient is arbitrarily small

• But this doesn’t mean it goes to a local minimum!
• Doesn’t rule out that it goes to a saddle point, or a local maximum.
• Doesn’t rule out that it goes to a region of  very flat but nonzero gradients.

• Certainly doesn’t mean that it finds the global optimum

• And the theoretical rate here was really slow



Strengthening these theoretical results
Convergence to a local minimum
• Under stronger conditions, can prove that SGD converges to a local 

minimum
• For example using the strict saddle property (Ge et al 2015)

• Using even stronger properties, can prove that SGD converges to a 
local minimum with an explicit convergence rate of  1/T

• But, it’s unclear whether common classes of  non-convex problems, 
such as neural nets, actually satisfy these stronger conditions.



Strengthening these theoretical results
Local convergence to the global minimum
• Another type of  result you’ll see are local convergence results

• Main idea: if  we start close enough to the global optimum, we will 
converge there with high probability

• Results often give explicit initialization
• scheme that is guaranteed to be close
• But it’s often expensive to run
• And limited to specific problems



Strengthening these theoretical results
Global convergence to a global minimum
• The strongest result is convergence no matter where we initialize
• Like in the convex case

• To prove this, we need a global understanding of  the objective
• So it can only apply to a limited class of  problems

• For many problems, we know empirically that this doesn’t happen
• Deep neural networks are an example of  this



Other types of  results

• Bounds on generalization error
• Roughly: we can’t say it’ll converge, but we can say that it won’t overfit

• Ruling out “spurious local minima”
• Minima that exist in the training loss, but not in the true/test loss.

• Results that use the Hessian to escape from saddle points
• By using it to find a descent direction, but rarely enough that it doesn’t damage 

the computational efficiency



Questions?

• Upcoming things
• Paper review #5a or #5b due Today
• Final Project Proposal due on Monday



Project Idea Discussion
Things to discuss and give feedback on

• What is interesting about the proposed project?
• What other interesting things could be done connected with the project?

• What technique(s) discussed in the course does the project explore?

• What experiments are planned?
• What other experiments would make sense to run?
• Is the project feasible to complete in the available time?


