Non-Convex Optimization

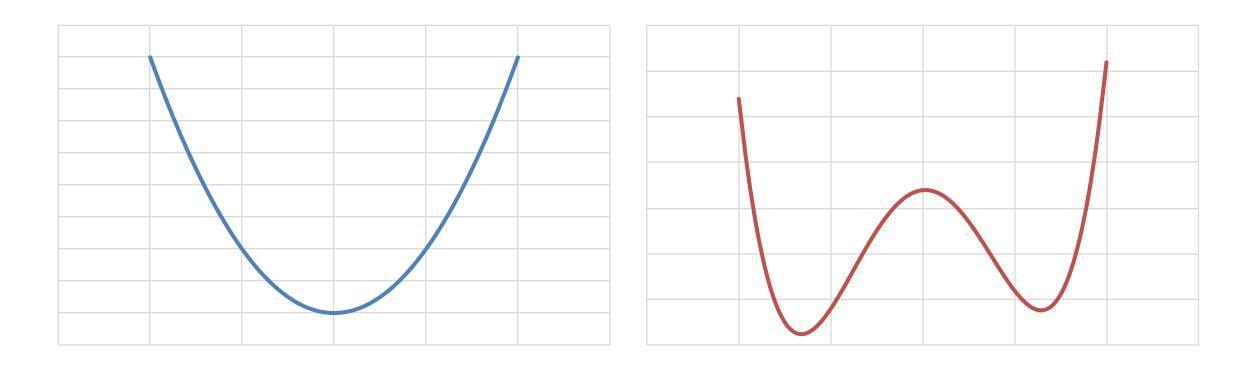
CS6787 Lecture 7 — Fall 2018

Review — We've covered many methods

- Stochastic gradient descent
- Mini-batching
- Momentum
- Variance reduction
- Nice convergence proofs that give us a rate
- But only for convex problems!

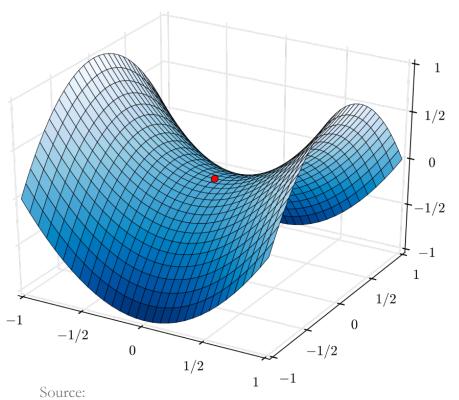
Non-Convex Problems

• Anything that's **not convex**



What makes non-convex optimization hard?

- Potentially many local minima
- Saddle points
- Very flat regions
- Widely varying curvature



https://commons.wikimedia.org/wiki/File:Saddle_point.svg

But is it actually that hard?

- Yes, many classes of non-convex optimization are at least NP-hard
 - Can encode most problems as non-convex optimization problems
- Example: subset sum problem
 - Given a set of integers, is there a non-empty subset whose sum is zero?
 - Known to be NP-complete.
- How do we encode this as an optimization problem?

Subset sum as non-convex optimization

- Let a_1, a_2, \ldots, a_n be the input integers
- Let $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ be 1 if $\mathbf{a_i}$ is in the subset, and 0 otherwise
- Objective: minimize $(a^T x)^2 + \sum_{i=1}^n x_i^2 (1 - x_i)^2$
- What is the optimum if subset sum returns true? What if it's false?

Non-convex problems can be harder than NP

- We can use the same trick to encode any **Diophantine equation**
 - Let **p** be an integer polynomial in **n** variables, then solve

$$\min_{x_1, x_2, \dots, x_n \in \mathbb{R}} \quad p^2(x_1, x_2, \dots, x_n) + \sum_{i=1}^n \sin^2(\pi x_i)$$

 \mathbf{n}

- What is the optimum if the Diophantine equation has a solution? What if it doesn't have a solution?
- Matiyasevich theorem: Diophantine equations undecidable in general

So non-convex optimization is pretty hard

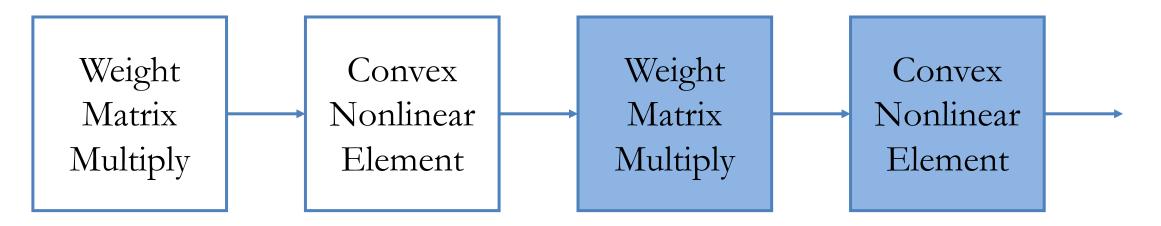
- There can't be a general algorithm to solve it efficiently in all cases
 - Or at all!
- Downsides: theoretical guarantees are weak or nonexistent
 - Depending on the application
 - There's usually no theoretical recipe for setting hyperparameters
- Upside: an endless array of **problems to try to solve better**
 - And gain theoretical insight about
 - And improve the performance of implementations

Examples of non-convex problems

- Matrix completion, principle component analysis
- Low-rank models and tensor decomposition
- Maximum likelihood estimation with hidden variables
 - Usually non-convex
- The big one: deep neural networks

Why are neural networks non-convex?

- They're often made of convex parts!
 - This by itself would be convex.



- Composition of convex functions is not convex
 - So deep neural networks also aren't convex

Why do neural nets need to be non-convex?

- Neural networks are universal function approximators
 - With enough neurons, they can learn to approximate any function arbitrarily well
- To do this, they need to be able to approximate non-convex functions
 - Convex functions can't approximate non-convex ones well.
- Neural nets also have many symmetric configurations
 - For example, exchanging intermediate neurons
 - This symmetry means they can't be convex. Why?

How to solve non-convex problems?

- Can use many of the same techniques as before
 - Stochastic gradient descent
 - Mini-batching
 - SVRG
 - Momentum
- There are also specialized methods for solving non-convex problems
 - Alternating minimization methods
 - Branch-and-bound methods
 - These generally aren't very popular for machine learning problems

Varieties of theoretical convergence results

- Convergence to a stationary point
- Convergence to a local minimum
- Local convergence to the global minimum
- Global convergence to the global minimum

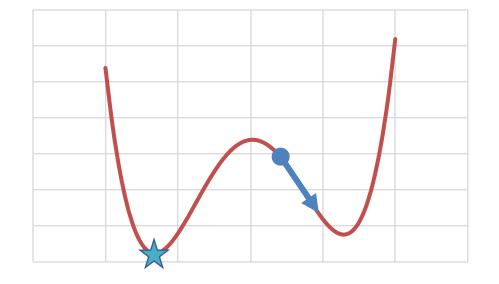
Non-convex Stochastic Gradient Descent

Stochastic Gradient Descent

• The update rule is the same for non-convex functions

$$w_{t+1} = w_t - \alpha_t \nabla \tilde{f}_t(w_t)$$

- Same intuition of moving in a direction that lowers objective
- Doesn't necessarily go towards optimum
 - Even in expectation



Non-convex SGD: A Systems Perspective

- It's exactly the same as the convex case!
- The hardware doesn't care whether our gradients are from a convex function or not
- This means that all our intuition about computational efficiency from the convex case directly applies to the non-convex case
- But does our intuition about statistical efficiency also apply?

When can we say SGD converges?

- First, we need to decide what type of convergence we want to show
 Here I'll just show convergence to a stationary point, the weakest type
- Assumptions:
 - Second-differentiable objective

$$-LI \preceq \nabla^2 f(x) \preceq LI$$

- Lipschitz-continuous gradients
- Noise has bounded variance

$$\mathbf{E}\left[\left\|\nabla \tilde{f}_t(x) - f(x)\right\|^2\right] \le \sigma^2$$

• But no convexity assumption!

Convergence of Non-Convex SGD

• Start with the update rule:

$$w_{t+1} = w_t - \alpha_t \nabla \tilde{f}_t(w_t)$$

• At the next time step, by Taylor's theorem, the objective will be

$$f(w_{t+1}) = f(w_t - \alpha_t \nabla \tilde{f}_t(w_t))$$

= $f(w_t) - \alpha_t \nabla \tilde{f}_t(w_t)^T \nabla f(w_t) + \frac{\alpha_t^2}{2} \nabla \tilde{f}_t(w_t)^T \nabla^2 f(y_t) \nabla \tilde{f}_t(w_t)$
 $\leq f(w_t) - \alpha_t \nabla \tilde{f}_t(w_t)^T \nabla f(w_t) + \frac{\alpha_t^2 L}{2} \left\| \nabla \tilde{f}_t(w_t) \right\|^2$

• Taking the expected value

$$\begin{split} \mathbf{E}\left[f(w_{t+1})|w_{t}\right] &\leq f(w_{t}) - \alpha_{t} \mathbf{E}\left[\nabla \tilde{f}_{t}(w_{t})^{T} \nabla f(w_{t}) \middle| w_{t}\right] + \frac{\alpha_{t}^{2} L}{2} \mathbf{E}\left[\left\|\nabla \tilde{f}_{t}(w_{t})\right\|^{2} \middle| w_{t}\right] \\ &= f(w_{t}) - \alpha_{t} \left\|\nabla f(w_{t})\right\|^{2} + \frac{\alpha_{t}^{2} L}{2} \mathbf{E}\left[\left\|\nabla \tilde{f}_{t}(w_{t})\right\|^{2} \middle| w_{t}\right] \\ &= f(w_{t}) - \alpha_{t} \left\|\nabla f(w_{t})\right\|^{2} + \frac{\alpha_{t}^{2} L}{2} \left\|\nabla f(w_{t})\right\|^{2} \\ &+ \frac{\alpha_{t}^{2} L}{2} \mathbf{E}\left[\left\|\nabla \tilde{f}_{t}(w_{t}) - \nabla f(w_{t})\right\|^{2} \middle| w_{t}\right] \\ &\leq f(w_{t}) - \left(\alpha_{t} - \frac{\alpha_{t}^{2} L}{2}\right) \left\|\nabla f(w_{t})\right\|^{2} + \frac{\alpha_{t}^{2} \sigma^{2} L}{2}. \end{split}$$

• So now we know how the expected value of the objective evolves.

$$\mathbf{E}\left[f(w_{t+1})|w_t\right] \le f(w_t) - \left(\alpha_t - \frac{\alpha_t^2 L}{2}\right) \left\|\nabla f(w_t)\right\|^2 + \frac{\alpha_t^2 \sigma^2 L}{2}.$$

• If we set α small enough that 1 - $\alpha L/2 > 1/2$, then

$$\mathbf{E}[f(w_{t+1})|w_t] \le f(w_t) - \frac{\alpha_t}{2} \|\nabla f(w_t)\|^2 + \frac{\alpha_t^2 \sigma^2 L}{2}$$

• Now taking the full expectation,

$$\mathbf{E}\left[f(w_{t+1})\right] \leq \mathbf{E}\left[f(w_t)\right] - \frac{\alpha_t}{2}\mathbf{E}\left[\left\|\nabla f(w_t)\right\|^2\right] + \frac{\alpha_t^2 \sigma^2 L}{2}.$$

 \bullet And summing up over an epoch of length ${\bf T}$

$$\mathbf{E}[f(w_T)] \le f(w_0) - \sum_{t=0}^{T-1} \frac{\alpha_t}{2} \mathbf{E}\left[\|\nabla f(w_t)\|^2 \right] + \sum_{t=0}^{T-1} \frac{\alpha_t^2 \sigma^2 L}{2}.$$

- Now we need to decide how to set the step size α_t
 - Let's just set it to be decreasing like we did in the convex setting

$$\alpha_t = \frac{\alpha_0}{t+1}$$

• So our bound on the objective becomes

$$\mathbf{E}\left[f(w_T)\right] \le f(w_0) - \sum_{t=0}^{T-1} \frac{\alpha_0}{2(t+1)} \mathbf{E}\left[\|\nabla f(w_t)\|^2\right] + \sum_{t=0}^{T-1} \frac{\alpha_0^2 \sigma^2 L}{2(t+1)^2}.$$

• Rearranging the terms,

$$\sum_{t=0}^{T-1} \frac{\alpha_0}{2(t+1)} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right] \le f(w_0) - \mathbf{E} \left[f(w_T) \right] + \sum_{t=0}^{T-1} \frac{\alpha_0^2 \sigma^2 L}{2(t+1)^2}$$

$$\leq f(w_0) - f(w^*) + \frac{\alpha_0^2 \sigma^2 L}{2} \sum_{t=0}^{\infty} \frac{1}{(t+1)^2}$$
$$\leq f(w_0) - f(w^*) + \frac{\alpha_0^2 \sigma^2 L}{2} \cdot \frac{\pi^2}{6}.$$

Now, we're kinda stuck

• How do we use the bound on this term to say something useful?

$$\sum_{t=0}^{T-1} \frac{\alpha_0}{2(t+1)} \mathbf{E} \left[\left\| \nabla f(w_t) \right\|^2 \right]$$

- Idea: rather than outputting w_T , instead output some randomly chosen w_i from the history.
 - You might recall this trick from the proof in the SVRG paper.

Let
$$z_T = w_t$$
 with probability $\frac{1}{H_T(t+1)}$, where $H_t = \sum_{t=0}^{T-1} \frac{1}{t+1}$

Using our randomly chosen output

Let $z_T = w_t$ with probability $\frac{1}{H_T(t+1)}$, where $H_t = \sum_{t=0}^{T-1} \frac{1}{t+1}$

• So the expected value of the gradient at this point is

$$\mathbf{E}\left[\left\|\nabla f(z_T)\right\|^2\right] = \sum_{t=0}^{T-1} \mathbf{P}\left(z_T = w_t\right) \cdot \mathbf{E}\left[\left\|\nabla f(w_t)\right\|^2\right]$$
$$= \sum_{t=0}^{T-1} \frac{1}{H_T(t+1)} \mathbf{E}\left[\left\|\nabla f(w_t)\right\|^2\right].$$

• Now we can continue to bound this with

$$\mathbf{E}\left[\left\|\nabla f(z_T)\right\|^2\right] = \frac{2}{\alpha_0 H_T} \sum_{t=0}^{T-1} \frac{\alpha_0}{2(t+1)} \mathbf{E}\left[\left\|\nabla f(w_t)\right\|^2\right] \\ \leq \frac{2}{\alpha_0 H_T} \left(f(w_0) - f(w^*) + \frac{\pi^2 \alpha_0^2 \sigma^2 L}{12}\right) \\ \leq \frac{2}{\alpha_0 \log T} \left(f(w_0) - f(w^*) + \frac{\pi^2 \alpha_0^2 \sigma^2 L}{12}\right)$$

 \bullet This means that for some fixed constant ${\boldsymbol C}$

$$\mathbf{E}\left[\left\|\nabla f(z_T)\right\|^2\right] \le \frac{C}{\log T}$$

• And so in the limit

$$\lim_{T \to \infty} \mathbf{E} \left[\left\| \nabla f(z_T) \right\|^2 \right] = 0.$$

Convergence Takeaways

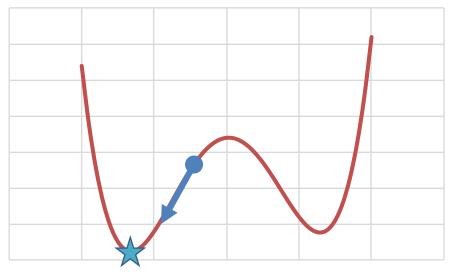
- So even non-convex SGD converges!
 - In the sense of getting to points where the gradient is arbitrarily small
- But this doesn't mean it goes to a local minimum!
 - Doesn't rule out that it goes to a saddle point, or a local maximum.
 - Doesn't rule out that it goes to a region of very flat but nonzero gradients.
- Certainly doesn't mean that it finds the global optimum
- And the theoretical rate here was really slow

Strengthening these theoretical results Convergence to a local minimum

- Under stronger conditions, can prove that SGD converges to a local minimum
 - For example using the strict saddle property (Ge et al 2015)
- Using even stronger properties, can prove that SGD converges to a local minimum with an explicit convergence rate of 1/T
- But, it's unclear whether common classes of non-convex problems, such as neural nets, actually satisfy these stronger conditions.

Strengthening these theoretical results Local convergence to the global minimum

- Another type of result you'll see are local convergence results
- Main idea: if we **start close enough to the global optimum**, we will converge there with high probability
- Results often give **explicit initialization scheme** that is guaranteed to be close
 - But it's often expensive to run
 - And limited to specific problems



Strengthening these theoretical results Global convergence to a global minimum

- The strongest result is convergence no matter where we initialize
 Like in the convex case
- To prove this, we need a global understanding of the objective
 So it can only apply to a limited class of problems
- For many problems, we know empirically that this doesn't happen
 - Deep neural networks are an example of this

Other types of results

- Bounds on generalization error
 - Roughly: we can't say it'll converge, but we can say that it won't overfit
- Ruling out "spurious local minima"
 - Minima that exist in the training loss, but not in the true/test loss.
- Results that use the Hessian to escape from saddle points
 - By using it to find a descent direction, but rarely enough that it doesn't damage the computational efficiency

Questions?

- Upcoming things
 - Paper review #5a or #5b due Today
 - Final Project Proposal due on Monday

Project Idea Discussion

Things to discuss and give feedback on

- What is interesting about the proposed project?
 - What other interesting things could be done connected with the project?
- What technique(s) discussed in the course does the project explore?
- What experiments are planned?
 - What other experiments would make sense to run?
 - Is the project feasible to complete in the available time?