
Non-Convex Optimization
CS6787 Lecture 7 — Fall 2018

Review — We’ve covered many methods

• Stochastic gradient descent
• Mini-batching
• Momentum
• Variance reduction

• Nice convergence proofs that give us a rate

• But only for convex problems!

Non-Convex Problems

• Anything that’s not convex

What makes non-convex optimization hard?

• Potentially many local minima

• Saddle points

• Very flat regions

• Widely varying curvature

Source:
https://commons.wikimedia.org/wiki/File:Saddle_point.svg

But is it actually that hard?

• Yes, many classes of non-convex optimization are at least NP-hard
• Can encode most problems as non-convex optimization problems

• Example: subset sum problem
• Given a set of integers, is there a non-empty subset whose sum is zero?
• Known to be NP-complete.

• How do we encode this as an optimization problem?

Subset sum as non-convex optimization

• Let a1, a2, …, an be the input integers

• Let x1, x2, …, xn be 1 if ai is in the subset, and 0 otherwise

• Objective:

• What is the optimum if subset sum returns true? What if it’s false?

minimize
�
aTx

�2
+

nX

i=1

x2
i (1� xi)

2

Non-convex problems can be harder than NP

• We can use the same trick to encode any Diophantine equation
• Let p be an integer polynomial in n variables, then solve

• What is the optimum if the Diophantine equation has a solution?
What if it doesn’t have a solution?

• Matiyasevich theorem: Diophantine equations undecidable in general

So non-convex optimization is pretty hard

• There can’t be a general algorithm to solve it efficiently in all cases
• Or at all!

• Downsides: theoretical guarantees are weak or nonexistent
• Depending on the application
• There’s usually no theoretical recipe for setting hyperparameters

• Upside: an endless array of problems to try to solve better
• And gain theoretical insight about
• And improve the performance of implementations

Examples of non-convex problems

• Matrix completion, principle component analysis

• Low-rank models and tensor decomposition

• Maximum likelihood estimation with hidden variables
• Usually non-convex

• The big one: deep neural networks

Why are neural networks non-convex?

• They’re often made of convex parts!
• This by itself would be convex.

• Composition of convex functions is not convex
• So deep neural networks also aren’t convex

Weight
Matrix

Multiply

Convex
Nonlinear
Element

Weight
Matrix

Multiply

Convex
Nonlinear
Element

Why do neural nets need to be non-convex?

• Neural networks are universal function approximators
• With enough neurons, they can learn to approximate any function arbitrarily well

• To do this, they need to be able to approximate non-convex functions
• Convex functions can’t approximate non-convex ones well.

• Neural nets also have many symmetric configurations
• For example, exchanging intermediate neurons
• This symmetry means they can’t be convex. Why?

How to solve non-convex problems?

• Can use many of the same techniques as before
• Stochastic gradient descent
• Mini-batching
• SVRG
• Momentum

• There are also specialized methods for solving non-convex problems
• Alternating minimization methods
• Branch-and-bound methods
• These generally aren’t very popular for machine learning problems

Varieties of theoretical convergence results

• Convergence to a stationary point

• Convergence to a local minimum

• Local convergence to the global minimum

• Global convergence to the global minimum

Non-convex
Stochastic Gradient Descent

Stochastic Gradient Descent

• The update rule is the same for non-convex functions

• Same intuition of moving in a direction that lowers objective

• Doesn’t necessarily go towards optimum
• Even in expectation

wt+1 = wt � ↵trf̃t(wt)

Non-convex SGD: A Systems Perspective

• It’s exactly the same as the convex case!

• The hardware doesn’t care whether our gradients are from a convex
function or not

• This means that all our intuition about computational efficiency from the
convex case directly applies to the non-convex case

• But does our intuition about statistical efficiency also apply?

When can we say SGD converges?

• First, we need to decide what type of convergence we want to show
• Here I’ll just show convergence to a stationary point, the weakest type

• Assumptions:
• Second-differentiable objective

• Lipschitz-continuous gradients

• Noise has bounded variance

• But no convexity assumption!

�LI � r2f(x) � LI

E

���rf̃t(x)� f̃(x)
���
2
�
 �2

Convergence of Non-Convex SGD

• Start with the update rule:

• At the next time step, by Taylor’s theorem, the objective will be

wt+1 = wt � ↵trf̃t(wt)

f(wt+1) = f(wt � ↵trf̃t(wt))

= f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
t

2
rf̃t(wt)

Tr2f(yt)rf̃t(wt)

 f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
tL

2

���rf̃t(wt)
���
2

f(wt+1) = f(wt � ↵trf̃t(wt))

= f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
t

2
rf̃t(wt)

Tr2f(yt)rf̃t(wt)

 f(wt)� ↵trf̃t(wt)
Trf(wt) +

↵2
tL

2

���rf̃t(wt)
���
2

Convergence (continued)

• Taking the expected value

E [f(wt+1)|wt]  f(wt)� ↵tE
h
rf̃t(wt)

Trf(wt)
���wt

i
+

↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
krf(wt)k2

+
↵2
tL

2
E

���rf̃t(wt)�rf(wt)
���
2
����wt

�

 f(wt)�
✓
↵t �

↵2
tL

2

◆
krf(wt)k2 +

↵2
t�

2L

2
.

E [f(wt+1)|wt]  f(wt)� ↵tE
h
rf̃t(wt)

Trf(wt)
���wt

i
+

↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
krf(wt)k2

+
↵2
tL

2
E

���rf̃t(wt)�rf(wt)
���
2
����wt

�

 f(wt)�
✓
↵t �

↵2
tL

2

◆
krf(wt)k2 +

↵2
t�

2L

2
.

E [f(wt+1)|wt]  f(wt)� ↵tE
h
rf̃t(wt)

Trf(wt)
���wt

i
+

↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
krf(wt)k2

+
↵2
tL

2
E

���rf̃t(wt)�rf(wt)
���
2
����wt

�

 f(wt)�
✓
↵t �

↵2
tL

2

◆
krf(wt)k2 +

↵2
t�

2L

2
.

E [f(wt+1)|wt]  f(wt)� ↵tE
h
rf̃t(wt)

Trf(wt)
���wt

i
+

↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
E

���rf̃t(wt)
���
2
����wt

�

= f(wt)� ↵t krf(wt)k2 +
↵2
tL

2
krf(wt)k2

+
↵2
tL

2
E

���rf̃t(wt)�rf(wt)
���
2
����wt

�

 f(wt)�
✓
↵t �

↵2
tL

2

◆
krf(wt)k2 +

↵2
t�

2L

2
.

Convergence (continued)

• So now we know how the expected value of the objective evolves.

• If we set ⍺ small enough that 1 - ⍺L/2 > 1/2, then

E [f(wt+1)|wt]  f(wt)�
✓
↵t �

↵2
tL

2

◆
krf(wt)k2 +

↵2
t�

2L

2
.

E [f(wt+1)|wt]  f(wt)�
↵t

2
krf(wt)k2 +

↵2
t�

2L

2
.

Convergence (continued)

• Now taking the full expectation,

• And summing up over an epoch of length T

E [f(wt+1)]  E [f(wt)]�
↵t

2
E
h
krf(wt)k2

i
+

↵2
t�

2L

2
.

E [f(wT)]  f(w0)�
T�1X

t=0

↵t

2
E
h
krf(wt)k2

i
+

T�1X

t=0

↵2
t�

2LT

2
.

Convergence (continued)

• Now we need to decide how to set the step size ⍺t
• Let’s just set it to be decreasing like we did in the convex setting

• So our bound on the objective becomes

↵t =
↵0

t+ 1

E [f(wT)]  f(w0)�
T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i
+

T�1X

t=0

↵2
0�

2LT

2(t+ 1)2
.

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i
 f(w0)�E [f(wT)] +

T�1X

t=0

↵2
0�

2LT

2(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2

1X

t=0

1

(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2
· ⇡

2

6
.

Convergence (continued)

• Rearranging the terms,

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i
 f(w0)�E [f(wT)] +

T�1X

t=0

↵2
0�

2LT

2(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2

1X

t=0

1

(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2
· ⇡

2

6
.

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i
 f(w0)�E [f(wT)] +

T�1X

t=0

↵2
0�

2LT

2(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2

1X

t=0

1

(t+ 1)2

 f(w0)� f(w⇤) +
↵2
0�

2LT

2
· ⇡

2

6
.

Now, we’re kinda stuck

• How do we use the bound on this term to say something useful?

• Idea: rather than outputting wT, instead output some randomly chosen
wi from the history.
• You might recall this trick from the proof in the SVRG paper.

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i

Let zT = wt with probability 1
HT (t+1) , where Ht =

P
T�1
t=0

1
t+1

Using our randomly chosen output

• So the expected value of the gradient at this point is

Let zT = wt with probability 1
HT (t+1) , where Ht =

P
T�1
t=0

1
t+1

E
h
krf(zT)k2

i
=

T�1X

t=0

P (zT = wt) ·E
h
krf(wt)k2

i

=
T�1X

t=0

1

HT (t+ 1)
E
h
krf(wt)k2

i
.

Convergence (continued)

• Now we can continue to bound this with

E
h
krf(zT)k2

i
=

2

↵0HT

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i

 2

↵0HT

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

 2

↵0 log T

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

E
h
krf(zT)k2

i
=

2

↵0HT

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i

 2

↵0HT

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

 2

↵0 log T

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

E
h
krf(zT)k2

i
=

2

↵0HT

T�1X

t=0

↵0

2(t+ 1)
E
h
krf(wt)k2

i

 2

↵0HT

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

 2

↵0 log T

✓
f(w0)� f(w⇤) +

⇡
2
↵
2
0�

2
L

12

◆

Convergence (continued)

• This means that for some fixed constant C

• And so in the limit

E
h
krf(zT)k2

i
 C

log T

lim
T!1

E
h
krf(zT)k2

i
= 0.

Convergence Takeaways

• So even non-convex SGD converges!
• In the sense of getting to points where the gradient is arbitrarily small

• But this doesn’t mean it goes to a local minimum!
• Doesn’t rule out that it goes to a saddle point, or a local maximum.
• Doesn’t rule out that it goes to a region of very flat but nonzero gradients.

• Certainly doesn’t mean that it finds the global optimum

• And the theoretical rate here was really slow

Strengthening these theoretical results
Convergence to a local minimum
• Under stronger conditions, can prove that SGD converges to a local

minimum
• For example using the strict saddle property (Ge et al 2015)

• Using even stronger properties, can prove that SGD converges to a
local minimum with an explicit convergence rate of 1/T

• But, it’s unclear whether common classes of non-convex problems,
such as neural nets, actually satisfy these stronger conditions.

Strengthening these theoretical results
Local convergence to the global minimum
• Another type of result you’ll see are local convergence results

• Main idea: if we start close enough to the global optimum, we will
converge there with high probability

• Results often give explicit initialization
• scheme that is guaranteed to be close
• But it’s often expensive to run
• And limited to specific problems

Strengthening these theoretical results
Global convergence to a global minimum
• The strongest result is convergence no matter where we initialize
• Like in the convex case

• To prove this, we need a global understanding of the objective
• So it can only apply to a limited class of problems

• For many problems, we know empirically that this doesn’t happen
• Deep neural networks are an example of this

Other types of results

• Bounds on generalization error
• Roughly: we can’t say it’ll converge, but we can say that it won’t overfit

• Ruling out “spurious local minima”
• Minima that exist in the training loss, but not in the true/test loss.

• Results that use the Hessian to escape from saddle points
• By using it to find a descent direction, but rarely enough that it doesn’t damage

the computational efficiency

Questions?

• Upcoming things
• Paper review #5a or #5b due Today
• Final Project Proposal due on Monday

Project Idea Discussion
Things to discuss and give feedback on

• What is interesting about the proposed project?
• What other interesting things could be done connected with the project?

• What technique(s) discussed in the course does the project explore?

• What experiments are planned?
• What other experiments would make sense to run?
• Is the project feasible to complete in the available time?

