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Overview

• Implement a machine learning system to solve a problem

• Use one or more of  the techniques we discussed in class

• To achieve an improvement over some baseline method
• Measuring both statistical performance and hardware performance
• Or at least evaluate and attempt to achieve such a speedup

• Otherwise, very open-ended
• Groups of  up to three



Project proposals due in two weeks

• The main body should be about one page in length.
• It should describe the project you intend to do.
• It should contain at least one citation of  a relevant paper that we did not 

cover in class.
• It should include some preliminary or exploratory work you've already 

done, that helps to support the idea that your project is feasible.
• Doesn’t have to be much work at all, just a nonzero amount of work.

• In addition to the one-page text proposal, one short experiment 
plan per person



Experiment plan

• The hypothesis

• The proxy

• The protocol

• Expected results



In-class feedback activity

• On Wednesday, October 10

• Basically, breakout sessions to discuss your project ideas with your peers.
• You are not committing to work on the specific project you present during the 

feedback activity. You can always change your ideas as a result of  the feedback.

• Prepare a two-minute verbal pitch of  your ideas.

• And try not to sit with others in your group.
• To get a wider variety of  feedback.
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Review — We’ve covered many methods

• Stochastic gradient descent
• Step size/learning rate, how long to run

• Mini-batching
• Batch size

• Momentum
• Momentum parameter

• Kernel trick/feature extraction
• How many features to extract

• Variance reduction
• Step size, epoch length

How do we 
set these 

parameters?



So Far: Theory

• Theoretical analysis of  convex problems gives us a recipe for assigning 
hyperparameters
• Also gives guarantees that the algorithm will converge with some optimal rate

• Often based on strong-convexity/Lipschitz constants µ, L, etc.
• Parameters that we can bound analytically, regardless of  the data

• This is usually enough to get an asymptotically optimal rate
• Certainly in the worst case



The Worst-Case Perspective

• Essentially, the theory I showed you is doing

• We’re not using the training data at all to set the parameters
• Or if  we are, we’re only using it to compute constants like µ and L

• Question: can we use the data to improve our choice of  parameters 
over what the theory gives us?

arg min
parameters

max
data

(objective)



Demo



What happened?

• Theory only minimizes an upper bound on the objective.

• But actual algorithm can do much better than the bound.
• As we saw in the demo.

• Problem: in the demo, to find the best parameter setting, we had to first 
solve the problem exactly, then run the algorithm many times.
• Computationally intractable in practice!

• Can we use a cheaper heuristic to set the parameters?



Hyperparameter Optimization



Hyperparameter Optimization

• Also called metaparameter optimization
• I am more used to this term so you will hear me using it more often

• Also called tuning

• Any system that chooses hyperparameters automatically

• What’s the difference between the model parameters, and the 
hyperparameters?



Many Settings; Many Strategies

• In some settings, just care about the model accuracy
• Just want to set things like the learning rate

• In other settings, also want to make the hardware fast
• Want to choose what hardware to run on, how many cores, etc.

• In all settings, there’s many ways to do hyperparameter optimization



Simplest Strategy:
The Null Hyperparameter Optimizer
• Simplest thing to do is to just set the parameters based on folklore.

• Minibatch size: b = 32

• Momentum: β = 0.9

• SVRG: epoch length =    5 x Training Set Size

?

?

?



The Effect of  Using Folklore

• Folklore can lead you astray!
• Can actually find simple cases where the folklore settings are wrong.
• This is a good way to start a research paper.

• …but folklore is folklore for a reason!
• It exists where people have found empirically that they get good results.
• So when you try something new, the first thing to compare to is folklore.

• To be honest, the results you get from just using the folklore settings are 
really not that bad for a lot of  practical purposes.



From the simplest strategy to…
The Most Complicated Strategy

• Spend twenty-five years training a Strong AI on custom hardware, 
then have it set your hyperparameters.

• …more explicitly, just get a human to set your hyperparameters.

• Fortunately, we happen to have a lot of  humans
• But human effort, particularly expert human effort, doesn’t scale.



Tuning By Hand

• Just fiddle with the parameters until you get the results you want

• Probably the most common type of  hyperparameter optimization

• Upsides: the results are generally pretty good…

• Downsides: lots of  effort, and no theoretical guarantees
• Although there’s nothing fundamental that prevents us from having theory here



Demo



Grid Search

• Define some grid of  parameters you want to try

• Try all the parameter values in the grid
• By running the whole system for each setting of  parameters

• Then choose the setting with the best result

• Essentially a brute force method



Downsides of  Grid Search

• As the number of  parameters increases, the cost of  grid search
increases exponentially!
• Why?

• Still need some way to choose the grid properly
• Something this can be as hard as the original hyperparameter optimization

• Can’t take advantage of  any insight you have about the system!



Making Grid Search Fast

• Early stopping to the rescue
• Can run all the grid points for one epoch, then discard the half  that performed 

worse, then run for another epoch, discard half, and continue.

• Can take advantage of  parallelism
• Run all the different parameter settings independently on different servers in a 

cluster.
• An embarrassingly parallel task.
• Downside: doesn’t reduce the energy cost.



One Variant: Random Search

• This is just grid search, but with randomly chosen points instead of  
points on a grid.

• This solves the curse of  dimensionality
• Don’t need to increase the number of  grid points exponentially as the number of  

dimensions increases.

• Problem: with random search, not necessarily going to get anywhere 
near the optimal parameters in a finite sample.



One Variant: Best Ball

• Works with epochs.

• At each epoch, do a small grid search around the current 
hyperparameter settings

• Then evaluate the objective and choose the “best ball” 
• The choice of  parameters that gave the best objective for that epoch

• And repeat until a solution of  desired quality is achieved.



An Alternative: Bayesian Optimization

• Statistical approach for minimizing noisy black-box functions.

• Idea: learn a statistical model of  the function from hyperparameter
values to the loss function
• Then choose parameters to minimize the loss under this model

• Main benefit: choose the hyperparameters to test not at random, but in a 
way that gives the most information about the model
• This lets it learn faster than grid search



Effect of  Bayesian Optimization

• Downside: it’s a pretty heavyweight method
• The updates are not as simple-to-implement as grid search

• Upside: empirically it has been demonstrated to get better results in 
fewer experiments
• Compared with grid search and random search

• Pretty widely used method
• Lots of  research opportunities here.



A related method: DFO

• Derivative-free optimization

• Also called zeroth-order optimization

• These methods optimize a function using only evaluations, no derivatives

• Ideal for use with metaparameter optimization
• Also ideal for reinforcement learning



The opposite of  DFO
Gradient-based optimization
• These strategies say: “I’m doing SGD to learn, I may as well use it to 

optimize my hyperparameters.”

• When we can efficiently differentiate with respect to the 
hyperparameters, this strategy actually works pretty well.

• But generally, we can’t do it.



Methods that Look at the Data

• Many methods look at curvature/variance info to decide how to set 
hyperparameters, and update their settings throughout the algorithm

• Example: ADAGRAD

• Example: Adam
• Which you will be reading in a few weeks.



Evaluating the Hyperparameter
Optimization



How to evaluate the hyperparameters?

• Unlike the model parameters, we’re not given a loss function

• Can’t we just use the training loss?

• Not always: we don’t want to overfit the hyperparameters
• Especially not when they are things that affect the model



Cross-Validation

• Partition part of  the available data to create an validation dataset that 
we don’t use for training.

• Then use that set to evaluate the hyperparameters.

• Typically, multiple rounds of  cross-validation are performed using 
different partitions
• Can get a very good sense of  how good the hyperparameters are
• But at a significant computational cost!



Evaluating the System Cost

• In practice we don’t just care about the statistics
• Not just about the accuracy after a fixed number of  iterations

• We care about wall-clock time, and we care about energy
• How much did solving this problem actually cost?

• The parameters we chose can affect these systems properties
• As we saw with our SVRG demo!

• Need to include systems cost as part of  the metric!



Hardware efficiency

• How long does an iteration take, on average?

• Hardware efficiency measures the systems cost of  doing a single update.

• Key point: many hyperparameters do not affect hardware efficiency
• Which ones?

• Which hyperparameters do affect hardware efficiency?



Statistical Efficiency

• How many iterations do we need to get to a specified level of  
accuracy?

• Statistical efficiency measures how many updates we need to get an 
answer of  the quality that we want.

• Which hyperparameters affect statistical efficiency?
• And which ones don’t?



Total performance

• Total cost of  running the algorithm is:

HARDWARE EFFICIENCY x STATISTICAL EFFICIENCY

• We can estimate these quantities separately, then use their product to 
evaluate our hyperparameters.

• For example, we can use theory to evaluate statistical efficiency and a 
hardware model to evaluate hardware efficiency.



Benefits of  Looking at Both

• Looking at both statistical and hardware efficiency together has 
some important benefits!

• Many times the optimal parameter settings are different than if  you 
set the parameters to optimize hardware efficiency or statistical efficiency 
individually.

• There’s a lot of  open research opportunities here!



Recent example: YellowFin Tuner

• System that among other things tunes the momentum
• As well as using asynchronous parallelism, which we’ll talk about later.

Figure 1 from
“YellowFin and the Art of  
Momentum Tuning”
Zhang et al, 2017.



Questions?

• Upcoming things
• Fall break next Monday — no lecture
• Paper review 4a or 4b due Today
• Paper Presentation #5 on Wednesday
• In class discussion of  project ideas the following Wednesday


