
Online vs. Offline Learning, 
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2018



Recall from Lecture 2

• Gradient descent
• Computationally slow to run
• Statistically converges at a linear rate

• Stochastic gradient descent (SGD)
• Computationally fast iterations, no dependence on dataset size
• Statistically converges at a slower rate — or to a noise ball
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Can We Do Better?

• Is there an algorithm that has the computational structure of  SGD, 
but still gets the fast linear rates of  gradient descent?

• Intermediate question: can we find problems for which vanilla SGD 
already converges at a linear rate, rather than converging to a noise ball?
• If  we find such a problem, we can understand why it happens.



Rank-1 Matrix Completion

• Suppose you have some rank-1 matrix

• Carelessly, you lost most of  the entries of  A
• You only have access to a sparse, randomly-chosen subset of  the entries

• Goal: recover the original matrix A from the sparse samples.
• Applications include recommender systems, principle component analysis, etc.

A = xxT



Matrix Completion as Optimization

• Simplest thing: minimize squared error between model and samples.

• Is this convex?

• We can try to solve this with SGD: randomly choose (i, j) and run

minimizex
X

(i,j)2samples

(eTi xx
T ej � eTi Aej)

2

xt+1 = xt � 2↵(eTi xx
T ej � eTi Aej)(eie

T
j x+ eje

T
i x)



Aside: What is the cost of  SGD here?

• Update rule is

• Suppose we have K samples and              .

• What is the time complexity of  computing an iteration of  SGD?

• It’s really fast: O(1) — this makes SGD very attractive here
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Demo



A Linear Rate for SGD? Why?

• Variance of  the gradient estimator goes to zero over time.

• What is the variance at a particular point x?

• At an optimal point, xxT = A, the variance is zero! 
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The Role of  Variance

• Hypothesis: if  the variance becomes small when we get close to the 
optimum, we converge at a linear rate.

• In fact, we can prove that we get a linear rate if  for some C

• Or more generally
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Can we make this happen for any objective?

• One way to do it:

• In expectation, this is the same since

• And if  the samples are Lipschitz continuous with parameter L,

rg̃(x) = rf̃(x)�rf̃(x⇤)

E [rg̃(x)] = rf(x)�rf(x⇤) = rf(x)� 0
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Does this mean we can always get a linear rate?

• Yes! ...for any strongly convex problem where we know the solution.

• Doesn’t seem very useful.

• What if  we can approximate the solution? For 

• But now our gradients are biased — SGD converges to 

rg̃(x) = rf̃(x)�rf̃(x̂)

x̂ ⇡ x⇤

x̂ not x⇤



Unbiased gradients with approximate solutions

• We can force the gradient to be unbiased by letting

• Using a full gradient as an anchor to lower the variance

• But what is the computational cost of  doing this?
• Is it feasible to compute the full gradient in every setting?
• Is it worth it to get a linear rate?
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Online and Offline Learning



Two Types of  Settings for ML Problems

• Online learning
• The training examples arrive one-at-a-time as we are learning
• We don’t have access to all the training examples
• Not even necessarily a finite training set — new training examples may be 

generated in real time in response to e.g. changes in the environment

• Offline learning
• We have access to all the training examples upfront
• The objective is a finite sum over the given training set



Online Learning

• Have some distribution of  training examples, and goal is to

• But we don’t actually have an expression for the distribution

• All we can do is draw samples from it

minimizew Ex̃⇠distribution [loss(w; x̃)]

x̃1, x̃2, x̃3, . . .



Advantages of  Online Learning

• Online learning generally doesn’t overfit as much
• Why? The training distribution is the same as the test distribution.

• Online learning easily handles new data from the environment

• Systems benefit: we don’t need to materialize the entire training set
• Great for scaling up to problems that don’t fit in memory



Disadvantages of  Online Learning

• Can’t compute exact/full objectives and gradients
• Because we don’t even know distribution

• Difficult to evaluate convergence

• Generally don’t reuse training examples multiple times
• So don’t make efficient use of  the cache for the training set

• Neural networks sometimes catastrophically forget older examples.



Limitations on Online Learning

• 1-D least squares regression: for some distribution µ over R,

• Optimal solution is just the mean, regardless of  what µ is

minimizexEu⇠µ
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Limitations on Online Learning (continued)

• Suppose there were an online learning algorithm that converged at a 
linear rate for this 1-D least squares problem. Using t samples:

• But we know (from statistics) the lowest-variance estimator for the mean 
of  a distribution, given t samples, is just the sample mean

• Contradiction. No online algorithm can be this good!

E
⇥
(xt � x

⇤)2
⇤
= O(�t)
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Limitations on Online Learning (continued)

• Conclusion: there’s no online learning algorithm that converges at a 
linear rate for general convex problems.

• This doesn’t mean that online SGD never converges at a linear rate
• We saw that the matrix completion example did

• But it does suggest that if  we want to make SGD converge at a linear 
rate, we need more information than what we have in the online 
setting.



Aside: Online Learning in Research

• Online learning is an active area of  research.

• Just from a search of  the titles, there were 5 papers mentioning online 
learning in this year’s ICML and 23 papers in this year’s NIPS.
• And a few more if  we look at the abstracts.

• Particularly interesting to us because of  the computational benefits of  
being able to run online.



Offline Learning

• Offline or batch learning is the more traditional setting of  minimizing a 
finite sum of  training losses

• Offline learning is often just defined as “not online learning”

• We have access to everything:
• The loss function l
• The training examples x
• The training labels y
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Benefits of  Offline Learning

• Can compute exact/full objectives and gradients

• Consequence: it’s trivially possible to converge at a linear rate
• Just use gradient descent

• Can we leverage this to make an SGD-like algorithm fast?



Stochastic Variance-Reduced 
Gradient (SVRG)



Recall: Unbiased low-variance samples

• From a few slides ago, we were looking at using samples of  the form

• These samples have reduced variance when      is close to  

• We asked when we could do this, and now we have an answer:
• Only in the offline setting!

• Question: how do we use this in an algorithm?
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How much did we reduce the variance?

• If  the gradient samples are L-Lipschitz continuous
• And we abuse notation to define
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Is this enough for a linear rate for SGD?

• No, variance at the optimum is reduced, but still not zero!

• Idea: what if  we used a sequence of       that approaches the optimum?

• Then the variance would go to zero over time! 
• Intuition: if  the variance goes to zero at a linear rate, then SGD should also 

converge at a linear rate.

Var (rg̃(x⇤))  L2 kx⇤ � x̂k2 .

x̂



Is this enough? (continued)

• If  we have a sequence of       that converges to the optimum at a linear 
rate, then we can use it to reduce the variance of  SGD so that it 
converges to the optimum at a linear rate.

• This also doesn’t seem useful.

• Critical insight: use the iterates of  SGD as
• So, if  SGD converges at a linear rate, then SGD will converge at a linear rate
• Seems circular — but we can make it rigorous 
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How often to use full gradient samples?

• Can we use every iteration of  SGD as an anchor point      ?

• We could…but this would just be gradient descent.

• Instead, use a full gradient sample every K iterations of  SGD.
• Called an epoch.

x̂

rg̃(x) = rf̃(x)�rf̃(x) +E
h
rf̃(x)

i

= rf(x).



Stochastic Variance-Reduced Gradient (SVRG)

• Initialize x0,T arbitrarily
• Outer loop: for k = 1 to K

• Inner loop: for t = 1 to T
• Sample fk,t at random from training set losses
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Computational Cost of  SVRG

• Each inner loop runs for T iterations
• Has a computational cost of  O(T)

• If  we have n examples, the outer loop gradient computation has a 
computational cost of  O(n)

• Over K total outer loop iterations, total time is O(Kn + KT)



Memory Burden of  SVRG

• In addition to the copy of  the model that needs to be stored for vanilla 
SGD, we also need to store
• An additional copy of  the model vector for the anchor point
• An additional vector to store its exact/full gradient

• If  the model is of  size d, we will need to store a total of  3d numbers
• Plus the training set, which is usually much larger

• Takeaway: no significant memory cost to run SVRG

x̂



Linear Rates for SVRG



Very Simple Proof  that SVRG Converges

• Strategy: run the inner loop of  SVRG long enough that for some ! < 1

• Show that a fixed T suffices for every epoch k
• This is enough to show convergence at a linear rate. Why?

• You’ll see a tighter version of  this proof  in this week’s paper.
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Analysis of  an Inner Iterate of  SVRG

• Starting with the iterate:

• Let’s simplify it a little by abusing notation to drop the k subscripts
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Analysis (continued)

• Expected distance to the optimum:

• To proceed, need to bound the second order/variance term
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Analysis (continued)

• Important property: for constant c,

• We can use this to simplify the second order term: 

Var (X + c) = Var (X)
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Analysis (continued)

• Substituting this back, we get

• Now we can reduce the first part using strong convexity/Lipschitz
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Analysis (continued)

• We can now take the full expectation, given the anchor point

• Next, for simplicity, let

• Suppose we want to contract by a factor of  e. As long as e pt-1 > p0:
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Analysis (continued)

• Now we have

• Setting the step size such that
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Analysis (continued)

• Now, this was all contingent upon e pt-1 > p0.

• How many iterations do we need to get there?
• Need t such that

• It suffices to pick any
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Analysis of  Inner Loop Is Done!

• We’ve shown that if  we run for                    iterations,

• In particular, this means that across outer loop iterations,
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Outer Loop Analysis

• Applying this recursively,

• So, to get down to error ε we need k iterations, where
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Bringing it Together

• Total number of  stochastic gradient iterations needed is

• This is a linear rate!
• Although there’s a much tighter proof  in the paper this week with better 

dependence on the condition number.
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Issues with Variance Reduction

• Computational cost

• Overfitting

• Interaction with other techniques

• Choosing parameters
• Metaparameter optimization



Other Methods for Variance 
Reduction



SAG

• Stochastic average gradient

• At each step, randomly update a single example’s gradient estimate using 
the current iterate, like SGD

• But, use the sum of  all gradient estimates to perform an update



Systems Comparison: SAG vs SVRG

• SAG requires us to store a gradient sample for each training example

• What is the memory cost of  doing this, if  we have n training examples 
and our model has dimension d?

• Answer: it’s O(nd)

• Compare to SVRG which required O(3d)



Many other variance reduction methods

• SAG
• SAGA
• SVRG
• SDCA – stochastic dual coordinate ascent
• Etc.



Questions?

• Upcoming things
• Paper Presentation #4 on Wednesday — read paper before class
• Paper Review #3 due Today.


