Online vs. Offline Learning, Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2018

Recall from Lecture 2

- Gradient descent
 - Computationally slow to run
 - Statistically converges at a linear rate

$$\mathbf{E}\left[\left\|x_t - x^*\right\|^2\right] = O(\gamma^t)$$

- Stochastic gradient descent (SGD)
 - Computationally fast iterations, no dependence on dataset size
 - Statistically converges at a slower rate or to a noise ball

$$\mathbf{E}\left[\left\|x_t - x^*\right\|^2\right] = O(1/t)$$

Can We Do Better?

- Is there an algorithm that has the **computational structure of SGD**, but still gets the **fast linear rates of gradient descent**?
- Intermediate question: can we find problems for which vanilla SGD already converges at a linear rate, rather than converging to a noise ball?
 - If we find such a problem, we can **understand why it happens**.

Rank-1 Matrix Completion

- Suppose you have some rank-1 matrix $A = xx^T$
- Carelessly, you lost most of the entries of A
 - You only have access to a sparse, randomly-chosen subset of the entries
- Goal: recover the original matrix A from the sparse samples.
 - Applications include recommender systems, principle component analysis, etc.

Matrix Completion as Optimization

• Simplest thing: minimize squared error between model and samples.

minimize_x
$$\sum_{(i,j)\in\text{samples}} (e_i^T x x^T e_j - e_i^T A e_j)^2$$

- Is this convex?
- We can try to solve this with SGD: randomly choose (i, j) and run

$$x_{t+1} = x_t - 2\alpha (e_i^T x x^T e_j - e_i^T A e_j) (e_i e_j^T x + e_j e_i^T x)$$

Aside: What is the cost of SGD here?

• Update rule is

$$x_{t+1} = x_t - 2\alpha (e_i^T x x^T e_j - e_i^T A e_j) (e_i e_j^T x + e_j e_i^T x)$$

- Suppose we have **K** samples and $x \in \mathbb{R}^n$.
- What is the time complexity of computing an iteration of SGD?
- It's really fast: **O(1)** this makes SGD very attractive here

A Linear Rate for SGD? Why?

- Variance of the gradient estimator goes to zero over time.
- What is the variance at a particular point x?

$$\mathbf{E}\left[\left\|\tilde{\nabla}f(x)\right\|^{2}\right] = \frac{4}{K} \sum_{(i,j)\in\text{samples}} \left\|(e_{i}^{T}xx^{T}e_{j} - e_{i}^{T}Ae_{j})(e_{i}e_{j}^{T}x + e_{j}e_{i}^{T}x)\right\|^{2} \\ = \frac{4}{K} \sum_{(i,j)\in\text{samples}} (e_{i}^{T}xx^{T}e_{j} - e_{i}^{T}Ae_{j})^{2}((e_{j}^{T}x)^{2} + (e_{i}^{T}x)^{2})$$

• At an optimal point, $\mathbf{x}\mathbf{x}^{T} = \mathbf{A}$, the variance is zero!

The Role of Variance

- Hypothesis: if the variance becomes small when we get close to the optimum, we converge at a linear rate.
- In fact, we can prove that we get a linear rate if for some **C**

$$\operatorname{Var}\left(\nabla \tilde{f}(x)\right) \le C \, \|x - x^*\|^2$$

• Or more generally

$$\mathbf{E}\left[\left\|\nabla \tilde{f}(x)\right\|^{2}\right] \leq C\left\|\mathbf{E}\left[\nabla \tilde{f}(x)\right]\right\|^{2} = C\left\|\nabla f(x)\right\|^{2}$$

Can we make this happen for any objective?

• One way to do it:

$$\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(x^*)$$

• In expectation, this is the same since $\mathbf{E}\left[\nabla \tilde{g}(x)\right] = \nabla f(x) - \nabla f(x^*) = \nabla f(x) - 0$

• And if the samples are Lipschitz continuous with parameter L,

$$\|\nabla \tilde{g}(x)\|^2 = \|\nabla f(x) - \nabla f(x^*)\|^2 \le L^2 \|x - x^*\|^2$$

Does this mean we can always get a linear rate?

- Yes! ... for any strongly convex problem where we know the solution.
- Doesn't seem very useful.
- What if we can approximate the solution? For $\hat{x} \approx x^*$

$$\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x})$$

• But now our gradients are biased — SGD converges to \hat{x} not x^*

Unbiased gradients with approximate solutions

• We can force the gradient to be unbiased by letting

$$\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbf{E} \left[\nabla \tilde{f}(\hat{x}) \right]$$

- Using a full gradient as an anchor to lower the variance
- But what is the **computational cost** of doing this?
 - Is it feasible to compute the full gradient in every setting?
 - Is it worth it to get a linear rate?

Online and Offline Learning

Two Types of Settings for ML Problems

• Online learning

- The training examples arrive one-at-a-time as we are learning
- We don't have access to all the training examples
- Not even necessarily a finite training set new training examples may be generated in real time in response to e.g. changes in the environment

• Offline learning

- We have access to all the training examples upfront
- The objective is a finite sum over the given training set

Online Learning

- Have some distribution of training examples, and goal is to minimize_w $\mathbf{E}_{\tilde{x} \sim \text{distribution}} \left[\text{loss}(w; \tilde{x}) \right]$
- But we don't actually have an expression for the distribution
- All we can do is **draw samples from it**

$$\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \ldots$$

Advantages of Online Learning

- Online learning generally doesn't overfit as much
 - Why? The training distribution is the same as the test distribution.
- Online learning easily handles new data from the environment
- Systems benefit: we don't need to materialize the entire training set
 - Great for scaling up to problems that don't fit in memory

Disadvantages of Online Learning

- Can't compute exact/full objectives and gradients
 - Because we don't even know distribution
- Difficult to evaluate convergence
- Generally don't reuse training examples multiple times
 - So don't make efficient use of the cache for the training set
- Neural networks sometimes catastrophically forget older examples.

Limitations on Online Learning

• 1-D least squares regression: for some distribution μ over **R**,

minimize_x
$$\mathbf{E}_{u \sim \mu} \left[\frac{1}{2} (x-u)^2 \right]$$

• Optimal solution is just the mean, regardless of what μ is

$$x^* = \mathbf{E}_{u \sim \mu} \left[u \right]$$

Limitations on Online Learning (continued)

• Suppose there were an online learning algorithm that converged at a linear rate for this 1-D least squares problem. Using **t** samples:

$$\mathbf{E}\left[(x_t - x^*)^2\right] = O(\gamma^t)$$

• But we know (from statistics) the lowest-variance estimator for the mean of a distribution, given **t** samples, is just the **sample mean**

$$\bar{u} = \frac{1}{t} \sum_{i=1}^{t} u_t \Rightarrow \operatorname{Var}\left(\bar{u}\right) = \frac{1}{t} \operatorname{Var}\left(u_t\right)$$

• Contradiction. No online algorithm can be this good!

Limitations on Online Learning (continued)

- Conclusion: there's **no online learning algorithm that converges at a linear rate** for general convex problems.
- This doesn't mean that online SGD never converges at a linear rate
 - We saw that the matrix completion example did
- But it does suggest that if we want to make SGD converge at a linear rate, we need more information than what we have in the online setting.

Aside: Online Learning in Research

- Online learning is an active area of research.
- Just from a search of the titles, there were **5 papers** mentioning online learning in this year's ICML and **23 papers** in this year's NIPS.
 - And a few more if we look at the abstracts.
- Particularly interesting to us because of the **computational benefits** of being able to run online.

Offline Learning

• Offline or batch learning is the more traditional setting of minimizing a finite sum of training losses

minimize_w
$$\frac{1}{n} \sum_{i=1}^{n} l(w; x_i, y_i)$$

- Offline learning is often just defined as "not online learning"
- We have access to everything:
 - The loss function **1**
 - The training examples **x**
 - The training labels **y**

Benefits of Offline Learning

- Can compute exact/full objectives and gradients
- Consequence: it's trivially possible to converge at a linear rate
 Just use gradient descent
- Can we leverage this to make an SGD-like algorithm fast?

Stochastic Variance-Reduced Gradient (SVRG)

Recall: Unbiased low-variance samples

• From a few slides ago, we were looking at using samples of the form

$$\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbf{E} \left[\nabla \tilde{f}(\hat{x}) \right]$$

- These samples have **reduced variance** when \hat{x} is close to x^*
- We asked when we could do this, and now we have an answer:
 - Only in the offline setting!
- Question: how do we use this in an algorithm?

How much did we reduce the variance?

- If the gradient samples are L-Lipschitz continuous
 - And we abuse notation to define $\operatorname{Var}(u) = \mathbf{E} \left[\|u \mathbf{E}[u]\|^2 \right]$

$$\begin{aligned} \mathbf{Var}\left(\nabla \tilde{g}(x)\right) &= \mathbf{Var}\left(\nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbf{E}\left[\nabla \tilde{f}(\hat{x})\right]\right) \\ &= \mathbf{Var}\left(\nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x})\right) \\ &\leq \mathbf{E}\left[\left\|\nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x})\right\|^{2}\right] \\ &\leq L^{2} \left\|x - \hat{x}\right\|^{2}. \end{aligned}$$

Is this enough for a linear rate for SGD?

• No, variance at the optimum is reduced, but still not zero!

$$\operatorname{Var}\left(\nabla \tilde{g}(x^*)\right) \le L^2 \left\|x^* - \hat{x}\right\|^2.$$

- Idea: what if we used a sequence of \hat{x} that approaches the optimum?
- Then the variance would go to zero over time!
 - Intuition: if the variance goes to zero at a linear rate, then SGD should also converge at a linear rate.

Is this enough? (continued)

- If we have a sequence of \hat{x} that converges to the optimum at a linear rate, then we can use it to reduce the variance of SGD so that it converges to the optimum at a linear rate.
- This also doesn't seem useful.
- Critical insight: use the iterates of SGD as \hat{x}
 - So, if SGD converges at a linear rate, then SGD will converge at a linear rate
 - Seems circular but we can make it rigorous

How often to use full gradient samples?

- Can we use every iteration of SGD as an anchor point \hat{x} ?
- We could...but this would just be gradient descent.

$$\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(x) + \mathbf{E} \left[\nabla \tilde{f}(x) \right]$$
$$= \nabla f(x).$$

- Instead, use a full gradient sample every K iterations of SGD.
 - Called an **epoch**.

Stochastic Variance-Reduced Gradient (SVRG)

- Initialize $\mathbf{x}_{0,T}$ arbitrarily
- Outer loop: for $\mathbf{k} = 1$ to \mathbf{K}

$$\hat{x}_k \leftarrow x_{k-1,T} \\ \hat{g}_k \leftarrow \nabla f(\hat{x}_k) = \mathbf{E} \left[\nabla \tilde{f}(\hat{x}_k) \right] \\ x_{k,0} \leftarrow \hat{x}_k$$

- Inner loop: for t = 1 to T
 - Sample $\mathbf{f}_{\mathbf{k},\mathbf{t}}$ at random from training set losses

$$x_{k,t} \leftarrow x_{k,t-1} - \alpha \left(\nabla \tilde{f}_{k,t}(x_{k,t-1}) - \nabla \tilde{f}_{k,t}(\hat{x}_k) + \hat{g}_k \right)$$

Computational Cost of SVRG

- Each inner loop runs for **T** iterations
 - Has a computational cost of **O(T)**
- If we have **n** examples, the outer loop gradient computation has a computational cost of **O(n)**
- Over **K** total outer loop iterations, total time is **O(Kn + KT)**

Memory Burden of SVRG

- In addition to the copy of the model that needs to be stored for vanilla SGD, we also need to store
 - An additional copy of the model vector for the anchor point \hat{x}
 - An additional vector to store its exact/full gradient
- If the model is of size **d**, we will need to store a total of **3d** numbers
 - Plus the training set, which is usually much larger
- Takeaway: no significant memory cost to run SVRG

Linear Rates for SVRG

Very Simple Proof that SVRG Converges

• Strategy: run the inner loop of SVRG long enough that for some $\gamma < 1$

$$\mathbf{E}\left[\|x_{k,T} - x^*\|^2 | x_{k,0}\right] \le \gamma \|x_{k,0} - x^*\|^2.$$

- \bullet Show that a fixed T suffices for every epoch k
 - This is enough to show convergence at a linear rate. Why?
- You'll see a tighter version of this proof in this week's paper.

Analysis of an Inner Iterate of SVRG

• Starting with the iterate:

$$x_{k,t} = x_{k,t-1} - \alpha \left(\nabla \tilde{f}_{k,t}(x_{k,t-1}) - \nabla \tilde{f}_{k,t}(\hat{x}_k) + \hat{g}_k \right)$$

• Let's simplify it a little by abusing notation to drop the **k** subscripts

$$x_t = x_{t-1} - \alpha \left(\nabla \tilde{f}_t(x_{t-1}) - \nabla \tilde{f}_t(\hat{x}) + \nabla f(\hat{x}) \right)$$

Analysis (continued)

• Expected distance to the optimum:

$$\begin{aligned} \mathbf{E} \left[\|x_{t} - x^{*}\|^{2} |x_{t-1}\right] &= \mathbf{E} \left[\left\| x_{t-1} - x^{*} - \alpha \left(\nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) + \nabla f(\hat{x}) \right) \right\|^{2} |x_{t-1} \right] \\ &= \|x_{t-1} - x^{*}\|^{2} - 2\alpha (x_{t-1} - x^{*})^{T} \mathbf{E} \left[\nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) + \nabla f(\hat{x}) |x_{t-1} \right] \\ &+ \alpha^{2} \mathbf{E} \left[\left\| \nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) + \nabla f(\hat{x}) \right\|^{2} |x_{t-1} \right] \\ &= \|x_{t-1} - x^{*}\|^{2} - 2\alpha (x_{t-1} - x^{*})^{T} \nabla f(x_{t-1}) + \alpha^{2} \|\nabla f(x_{t-1})\|^{2} \\ &+ \alpha^{2} \mathbf{Var} \left(\nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) + \nabla f(\hat{x}) |x_{t-1} \right) \end{aligned}$$

• To proceed, need to bound the second order/variance term

- Important property: for constant **c**, $\operatorname{Var}(X + c) = \operatorname{Var}(X)$
- We can use this to simplify the second order term:

$$\begin{aligned} \mathbf{Var} \left(\nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) + \nabla f(\hat{x}) \middle| x_{t-1} \right) \\ &= \mathbf{Var} \left(\nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) \middle| x_{t-1} \right) \\ &\leq \mathbf{E} \left[\left\| \nabla \tilde{f}_{t}(x_{t-1}) - \nabla \tilde{f}_{t}(\hat{x}) \right\|^{2} \middle| x_{t-1} \right] \\ &\leq L^{2} \left\| x_{t-1} - \hat{x} \right\|^{2} \leq 2L^{2} \left\| x_{t-1} - x^{*} \right\|^{2} + 2L^{2} \left\| \hat{x} - x^{*} \right\|^{2} \end{aligned}$$

• Substituting this back, we get

$$\mathbf{E} \left[\|x_{t} - x^{*}\|^{2} |x_{t-1}|^{2} \leq \|x_{t-1} - x^{*}\|^{2} - 2\alpha (x_{t-1} - x^{*})^{T} \nabla f(x_{t-1}) + \alpha^{2} \|\nabla f(x_{t-1})\|^{2} + \alpha^{2} \left(2L^{2} \|x_{t-1} - x^{*}\|^{2} + 2L^{2} \|\hat{x} - x^{*}\|^{2} \right)$$

• Now we can reduce the first part using strong convexity/Lipschitz

$$\mathbf{E}\left[\|x_{t} - x^{*}\|^{2} | x_{t-1}\right] \leq \|x_{t-1} - x^{*}\|^{2} - 2\alpha\mu \|x_{t-1} - x^{*}\|^{2} + \alpha^{2}L^{2} \|x_{t-1} - x^{*}\|^{2} + \alpha^{2} \left(2L^{2} \|x_{t-1} - x^{*}\|^{2} + 2L^{2} \|\hat{x} - x^{*}\|^{2}\right)$$

• We can now take the full expectation, given the anchor point

$$\begin{split} \mathbf{E} \left[\|x_t - x^*\|^2 \Big| \hat{x} \right] &\leq (1 - 2\alpha\mu + 3\alpha^2 L^2) \mathbf{E} \left[\|x_{t-1} - x^*\|^2 \Big| \hat{x} \right] + 2\alpha^2 L^2 \|\hat{x} - x^*\|^2 \\ \bullet \text{ Next, for simplicity, let } \rho_t &= \mathbf{E} \left[\|x_t - x^*\|^2 \Big| \hat{x} \right] \\ \rho_t &\leq (1 - 2\alpha\mu + 3\alpha^2 L^2) \rho_{t-1} + 2\alpha^2 L^2 \rho_0 \end{split}$$

• Suppose we want to contract by a factor of **e**. As long as $e p_{t-1} > p_0$:

$$\rho_t \le (1 - 2\alpha\mu + 3\alpha^2 L^2)\rho_{t-1} + 2\alpha^2 L^2 e\rho_{t-1}$$

• Now we have

$$\rho_t \le (1 - 2\alpha\mu + 3\alpha^2 L^2)\rho_{t-1} + 2\alpha^2 L^2 e\rho_{t-1}$$

• Setting the step size such that $\alpha \mu = 5\alpha^2 L^2 e$

$$\rho_t \le \left(1 - \frac{\mu^2}{5L^2e}\right)\rho_{t-1} \Rightarrow \rho_t \le \left(1 - \frac{\mu^2}{5L^2e}\right)^t \rho_0 \le \exp\left(-\frac{\mu^2}{5L^2e}t\right)^t \rho_0$$

- Now, this was all contingent upon $e p_{t-1} > p_0$.
- How many iterations do we need to get there?
 - Need **t** such that

$$\exp\left(-\frac{\mu^2}{5L^2e}t\right) \le \frac{1}{e}$$

• It suffices to pick any

$$t \ge \frac{5L^2e}{\mu^2}$$

Analysis of Inner Loop Is Done!

• We've shown that if we run for $t \ge \frac{5L^2e}{\mu^2}$ iterations,

$$\mathbf{E}\left[\|x_{t} - x^{*}\|^{2} | \hat{x}\right] \leq \frac{1}{e} \|\hat{x} - x^{*}\|^{2}$$

• In particular, this means that across outer loop iterations,

$$\mathbf{E}\left[\|\hat{x}_{k+1} - x^*\|^2\right] \le \frac{1}{e}\mathbf{E}\left[\|\hat{x}_k - x^*\|^2\right]$$

Outer Loop Analysis

• Applying this recursively,

$$\mathbf{E}\left[\|\hat{x}_{k} - x^{*}\|^{2}\right] \le e^{-k} \|\hat{x}_{0} - x^{*}\|^{2}$$

• So, to get down to error ε we need k iterations, where

$$k \ge \log\left(\frac{\|\hat{x}_0 - x^*\|^2}{\epsilon}\right)$$

Bringing it Together

• Total number of stochastic gradient iterations needed is

$$tk \ge \frac{5L^2e}{\mu^2} \log\left(\frac{\|\hat{x}_0 - x^*\|^2}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

- This is a linear rate!
 - Although there's a much tighter proof in the paper this week with better dependence on the condition number.

Issues with Variance Reduction

- Computational cost
- Overfitting
- Interaction with other techniques
- Choosing parameters
 - Metaparameter optimization

Other Methods for Variance Reduction

SAG

- Stochastic average gradient
- At each step, randomly update a single example's gradient estimate using the current iterate, like SGD
- But, use the sum of all gradient estimates to perform an update

Systems Comparison: SAG vs SVRG

- SAG requires us to store a gradient sample for each training example
- What is the memory cost of doing this, if we have **n** training examples and our model has dimension **d**?
- Answer: it's **O(nd)**
- Compare to SVRG which required **O(3d)**

Many other variance reduction methods

- SAG
- SAGA
- SVRG
- SDCA stochastic dual coordinate ascent
- Etc.

Questions?

- Upcoming things
 - Paper Presentation #4 on Wednesday read paper before class
 - Paper Review #3 due Today.