
The Kernel Trick, Gram 
Matrices, and Feature Extraction

CS6787 Lecture 4 — Fall 2018



Basic Linear Models

• For two-class classification using model vector w

•What is the compute cost of  making a prediction in a d-
dimensional linear model, given an example x?

• Answer: d multiplies and d adds
• To do the dot product.

output = sign(wTx)



Optimizing Basic Linear Models

• For classification using model vector w

• Optimization methods for this task vary; here’s logistic regression

output = sign(wTx)

minimizew
1

n

nX
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log
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(yi 2 {�1, 1})



SGD on Logistic Regression

• Gradient of  a training example is

• So SGD update step is



What is the compute cost of  an SGD update?

• For logistic regression on a d-dimensional model

• Answer: 2d multiples and 2d adds + O(1) extra ops
• d multiplies and d adds to do the dot product
• d multiplies and d adds to do the AXPY operation
• O(1) additional ops for computing the exp, divide, etc.



Benefits of  Linear Models

• Fast classification: just one dot product

• Fast training/learning: just a few basic linear algebra operations

• Drawback: limited expressivity
• Can only capture linear classification boundaries à bad for many problems

• How do we let linear models represent a broader class of  decision 
boundaries, while retaining the systems benefits?



Review: The Kernel Method

• Idea: in a linear model we can think about the similarity between two 
training examples x and y as being

• This is related to the rate at which a random classifier will separate x and y

• Kernel methods replace this dot-product similarity with an arbitrary 
Kernel function that computes the similarity between x and y

xT y

K(x, y) : X ⇥ X ! R



Kernel Properties

• What properties do kernels need to have to be useful for learning?

• Key property: kernel must be symmetric

• Key property: kernel must be positive semi-definite

• Can check that the dot product has this property

K(x, y) = K(y, x)

8ci 2 R, xi 2 X ,
nX

i=1

nX

j=1

cicjK(xi, xj) � 0



Facts about Positive Semidefinite Kernels

• Sum of  two PSD kernels is a PSD kernel

• Product of  two PSD kernels is a PSD kernel

• Scaling by any function on both sides is a kernel

K(x, y) = K1(x, y)K2(x, y) is a PSD kernel

K(x, y) = K1(x, y) +K2(x, y) is a PSD kernel

K(x, y) = f(x)K1(x, y)f(y) is a PSD kernel



Other Kernel Properties

• Useful property: kernels are often non-negative

• Useful property: kernels are often scaled such that

• These properties capture the idea that the kernel is expressing the similarity 
between x and y

K(x, y) � 0

K(x, y)  1, and K(x, y) = 1 , x = y



Common Kernels

• Gaussian kernel/RBF kernel: de-facto kernel in machine learning

• We can validate that this is a kernel
• Symmetric? 
• Positive semi-definite? WHY?
• Non-negative? 
• Scaled so that K(x,x) = 1? 

K(x, y) = exp
�
��kx� yk2

�



Common Kernels (continued)

• Linear kernel: just the inner product

• Polynomial kernel:

• Laplacian kernel:

• Last layer of  a neural network:

K(x, y) = xT y

K(x, y) = (1 + xT y)p

K(x, y) = exp (��kx� yk1)

if last layer outputs �(x), then kernel is K(x, y) = �(x)T�(y)



Kernels as a feature mapping

•More generally, any function that can be written in the form

(where                           is called a feature map) is a kernel.

• Even works for maps onto infinite dimensional Hilbert space
• And in this case the converse is also true: any kernel has an associated 

(possibly infinite-dimensional) feature map.



Classifying with Kernels

• An equivalent way of  writing a linear model on a training set is

•We can kernel-ize this by replacing the dot products with kernel 
evals

output(x) = sign
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Learning with Kernels

• An equivalent way of  writing linear-model logistic regression is

•We can kernel-ize this by replacing the dot products with kernel 
evals
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The Computational Cost of  Kernels

• Recall: benefit of  learning with kernels is that we can express a wider 
class of  classification functions

• Recall: another benefit is linear classifier learning problems are 
“easy” to solve because they are convex, and gradients easy to compute

• Major cost of  learning naively with Kernels: have to evaluate K(x, y)
• For SGD, need to do this effectively n times per update
• Computationally intractable unless K is very simple



The Gram Matrix

• Address this computational problem by pre-computing the kernel 
function for all pairs of  training examples in the dataset.

• Transforms the logistic regression learning problem into 

• This is much easier than re-computing the kernel at each iteration

Gi,j = K(xi, xj)

minimizew
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Problems with the Gram Matrix

• Suppose we have n examples in our training set.

• How much memory is required to store the Gram matrix G?

• What is the cost of  taking the product Gi w to compute a gradient?

• What happens if  we have one hundred million training examples?



Feature Extraction

• Simple case: let’s imagine that X is a finite set {1, 2, …, k}

• We can define our kernel as a matrix

• Since M is positive semidefinite, it has a square root

M 2 Rk⇥k

Mi,j = K(i, j)

UTU = M

kX

i=1

Uk,iUk,j = Mi,j = K(i, j)



Feature Extraction (continued)

• So if  we define a feature mapping                    then

• The kernel is equivalent to a dot product in some space

• As we noted above, this is true for all kernels, not just finite ones
• Just with a possibly infinite-dimensional feature map

�(i) = Uei

�(i)T�(j) =
kX

i=1

Uk,iUk,j = Mi,j = K(i, j)



Classifying with feature maps

• Suppose that we can find a finite-dimensional feature map that satisfies

• Then we can simplify our classifier to

�(i)T�(j) = K(i, j)
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Learning with feature maps

• Similarly we can simplify our learning objective to

• Take-away: this is just transforming the input data, then running a 
linear classifier in the transformed space!

• Computationally: super efficient
• As long as we can transform and store the input data in an efficient way

minimizeu
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Problems with feature maps

• The dimension of  the transformed data may be much larger than the 
dimension of  the original data.

• Suppose that the feature map is                       and there are n examples

• How much memory is needed to store the transformed features?

• What is the cost of  taking the product                to compute a gradient?

� : Rd ! RD

uT�(xi)



Feature maps vs. Gram matrices

• Systems trade-offs exist here.

• When number of  examples gets very large, feature maps are better.

• When transformed feature vectors have high dimensionality, Gram 
matrices are better.



Another Problem with Feature Maps

• Recall: I said there was always a feature map for any kernel such that

• But this feature map is not always finite-dimensional
• For example, the Gaussian/RBF kernel has an infinite-dimensional feature map
• Many kernels we care about in ML have this property

• What do we do if  ɸ has infinite dimensions?
• We can’t just compute with it normally!

�(i)T�(j) = K(i, j)



Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

• Typically, we want to find a family of  feature maps ɸt such that

K(x, y) ⇡ �(x)T�(y)

�D : Rd ! RD

lim
D!1

�D(x)T�D(y) = K(x, y)



Types of  approximate feature maps

• Deterministic feature maps
• Choose a fixed-a-priori method of  approximating the kernel
• Generally not very popular because of  the way they scale with dimensions

• Random feature maps
• Choose a feature map at random (typically each feature is independent) such that

• Then prove with high probability that over some region of  interest

E
⇥
�(x)T�(y)

⇤
= K(x, y)

���(x)T�(y)�K(x, y)
��  ✏



Types of  Approximate Features (continued)

• Orthogonal randomized feature maps
• Intuition behind this: if  we have a feature map where for some i and j

then we can’t actually learn much from having both features.
• Strategy: choose the feature map at random, but subject to the constraint that the 

features be “orthogonal” in some way.

• Quasi-random feature maps
• Generate features using a low-discrepancy sequence rather than true randomness

eTi �(x) ⇡ eTj �(x)



Adaptive Feature Maps

• Everything before this didn’t take the data into account

• Adaptive feature maps look at the actual training set and try to 
minimize the kernel approximation error using the training set as a guide
• For example: we can do a random feature map, and then fine-tune the 

randomness to minimize the empirical error over the training set
• Gaining in popularity

• Also, neural networks can be thought of  as adaptive feature maps.



Systems Tradeoffs

• Lots of  tradeoffs here

• Do we spend more work up-front constructing a more sophisticated 
approximation, to save work on learning algorithms?

• Would we rather scale with the data, or scale to more complicated 
problems?

• Another task for hyperparameter optimization



Demo



Dimensionality reduction



Linear models are linear in the dimension

• But what if  the dimension d is very large?
• Example: if  we have a high-dimensional kernel map

• It can be difficult to run SGD when the dimension is very 
high even if  the cost is linear
• This happens for other learning algorithms too



Idea: reduce the dimension

• If  high dimension is the problem, can we just reduce d?

• This is the problem of  dimensionality reduction.

•Dimensionality reduction benefits both statistics and systems
• Statistical side: can help with generalization by identifying 

important subset of  features
• Systems side: lowers compute cost



Techniques for dimensionality reduction

• Feature selection by hand
• Simple method
• But costly in terms of  human effort

• Principal component analysis (PCA)
• Identify the directions of  highest variance in the dataset
• Then project onto those directions
• Many variants: e.g. kernel PCA



More techniques for dimensionality reduction

• Locality-sensitive hashing (LSH)
• Hash input items into buckets so close-by elements map into the 

same buckets with high probability
• Many methods of  doing this too

• Johnson-Lindenstrauss transform (random projection)
• General method for reducing dimensionality of  any dataset
• Just choose a random subspace and project onto that subspace



Johnson-Lindenstrauss lemma



Consequences of  J-L transform

•We only need O(log(m) / ε2) dimensions to map a dataset of  
size m with relative distance accuracy.
• No matter what the size of the input dataset was!

• This is a very useful result for many applications
• Provides a generic way of reducing the dimension with guarantees

• But there are more specialized data-dependent ways of  
doing dimensionality reduction that can work better.



Questions

• Upcoming things:
• Paper 2a or 2b review due tonight
• Paper 3 in class on Wednesday
• Start thinking about the class project
• It will come faster than you think!


