
The Kernel Trick, Gram
Matrices, and Feature Extraction

CS6787 Lecture 4 — Fall 2018

Basic Linear Models

• For two-class classification using model vector w

•What is the compute cost of making a prediction in a d-
dimensional linear model, given an example x?

• Answer: d multiplies and d adds
• To do the dot product.

output = sign(wTx)

Optimizing Basic Linear Models

• For classification using model vector w

• Optimization methods for this task vary; here’s logistic regression

output = sign(wTx)

minimizew
1

n

nX

i=1

log
�
1 + exp(�wTxiyi)

�

(yi 2 {�1, 1})

SGD on Logistic Regression

• Gradient of a training example is

• So SGD update step is

What is the compute cost of an SGD update?

• For logistic regression on a d-dimensional model

• Answer: 2d multiples and 2d adds + O(1) extra ops
• d multiplies and d adds to do the dot product
• d multiplies and d adds to do the AXPY operation
• O(1) additional ops for computing the exp, divide, etc.

Benefits of Linear Models

• Fast classification: just one dot product

• Fast training/learning: just a few basic linear algebra operations

• Drawback: limited expressivity
• Can only capture linear classification boundaries à bad for many problems

• How do we let linear models represent a broader class of decision
boundaries, while retaining the systems benefits?

Review: The Kernel Method

• Idea: in a linear model we can think about the similarity between two
training examples x and y as being

• This is related to the rate at which a random classifier will separate x and y

• Kernel methods replace this dot-product similarity with an arbitrary
Kernel function that computes the similarity between x and y

xT y

K(x, y) : X ⇥ X ! R

Kernel Properties

• What properties do kernels need to have to be useful for learning?

• Key property: kernel must be symmetric

• Key property: kernel must be positive semi-definite

• Can check that the dot product has this property

K(x, y) = K(y, x)

8ci 2 R, xi 2 X ,
nX

i=1

nX

j=1

cicjK(xi, xj) � 0

Facts about Positive Semidefinite Kernels

• Sum of two PSD kernels is a PSD kernel

• Product of two PSD kernels is a PSD kernel

• Scaling by any function on both sides is a kernel

K(x, y) = K1(x, y)K2(x, y) is a PSD kernel

K(x, y) = K1(x, y) +K2(x, y) is a PSD kernel

K(x, y) = f(x)K1(x, y)f(y) is a PSD kernel

Other Kernel Properties

• Useful property: kernels are often non-negative

• Useful property: kernels are often scaled such that

• These properties capture the idea that the kernel is expressing the similarity
between x and y

K(x, y) � 0

K(x, y)  1, and K(x, y) = 1 , x = y

Common Kernels

• Gaussian kernel/RBF kernel: de-facto kernel in machine learning

• We can validate that this is a kernel
• Symmetric?
• Positive semi-definite? WHY?
• Non-negative?
• Scaled so that K(x,x) = 1?

K(x, y) = exp
�
��kx� yk2

�

Common Kernels (continued)

• Linear kernel: just the inner product

• Polynomial kernel:

• Laplacian kernel:

• Last layer of a neural network:

K(x, y) = xT y

K(x, y) = (1 + xT y)p

K(x, y) = exp (��kx� yk1)

if last layer outputs �(x), then kernel is K(x, y) = �(x)T�(y)

Kernels as a feature mapping

•More generally, any function that can be written in the form

(where is called a feature map) is a kernel.

• Even works for maps onto infinite dimensional Hilbert space
• And in this case the converse is also true: any kernel has an associated

(possibly infinite-dimensional) feature map.

Classifying with Kernels

• An equivalent way of writing a linear model on a training set is

•We can kernel-ize this by replacing the dot products with kernel
evals

output(x) = sign

0

@

nX

i=1

wixi

!T

x

1

A

output(x) = sign

nX

i=1

wiK(xi, x)

!

Learning with Kernels

• An equivalent way of writing linear-model logistic regression is

•We can kernel-ize this by replacing the dot products with kernel
evals

minimizew
1

n

nX

i=1

log

0

B@1 + exp

0

B@�

0

@
nX

j=1

wjxj

1

A
T

xiyi

1

CA

1

CA

minimizew
1

n

nX

i=1

log

0

@1 + exp

0

@�
nX

j=1

wjyiK(xj , xi)

1

A

1

A

The Computational Cost of Kernels

• Recall: benefit of learning with kernels is that we can express a wider
class of classification functions

• Recall: another benefit is linear classifier learning problems are
“easy” to solve because they are convex, and gradients easy to compute

• Major cost of learning naively with Kernels: have to evaluate K(x, y)
• For SGD, need to do this effectively n times per update
• Computationally intractable unless K is very simple

The Gram Matrix

• Address this computational problem by pre-computing the kernel
function for all pairs of training examples in the dataset.

• Transforms the logistic regression learning problem into

• This is much easier than re-computing the kernel at each iteration

Gi,j = K(xi, xj)

minimizew
1

n

nX

i=1

log
�
1 + exp

�
�yie

T
i Gw

��

Problems with the Gram Matrix

• Suppose we have n examples in our training set.

• How much memory is required to store the Gram matrix G?

• What is the cost of taking the product Gi w to compute a gradient?

• What happens if we have one hundred million training examples?

Feature Extraction

• Simple case: let’s imagine that X is a finite set {1, 2, …, k}

• We can define our kernel as a matrix

• Since M is positive semidefinite, it has a square root

M 2 Rk⇥k

Mi,j = K(i, j)

UTU = M

kX

i=1

Uk,iUk,j = Mi,j = K(i, j)

Feature Extraction (continued)

• So if we define a feature mapping then

• The kernel is equivalent to a dot product in some space

• As we noted above, this is true for all kernels, not just finite ones
• Just with a possibly infinite-dimensional feature map

�(i) = Uei

�(i)T�(j) =
kX

i=1

Uk,iUk,j = Mi,j = K(i, j)

Classifying with feature maps

• Suppose that we can find a finite-dimensional feature map that satisfies

• Then we can simplify our classifier to

�(i)T�(j) = K(i, j)

output(x) = sign

nX

i=1

wiK(xi, x)

!

= sign

nX

i=1

wi�(xi)
T�(x)

!
= sign

�
uT�(x)

�

output(x) = sign

nX

i=1

wiK(xi, x)

!

= sign

nX

i=1

wi�(xi)
T�(x)

!
= sign

�
uT�(x)

�

Learning with feature maps

• Similarly we can simplify our learning objective to

• Take-away: this is just transforming the input data, then running a
linear classifier in the transformed space!

• Computationally: super efficient
• As long as we can transform and store the input data in an efficient way

minimizeu
1

n

nX

i=1

log
�
1 + exp

�
�uT�(xi)yi

��

Problems with feature maps

• The dimension of the transformed data may be much larger than the
dimension of the original data.

• Suppose that the feature map is and there are n examples

• How much memory is needed to store the transformed features?

• What is the cost of taking the product to compute a gradient?

� : Rd ! RD

uT�(xi)

Feature maps vs. Gram matrices

• Systems trade-offs exist here.

• When number of examples gets very large, feature maps are better.

• When transformed feature vectors have high dimensionality, Gram
matrices are better.

Another Problem with Feature Maps

• Recall: I said there was always a feature map for any kernel such that

• But this feature map is not always finite-dimensional
• For example, the Gaussian/RBF kernel has an infinite-dimensional feature map
• Many kernels we care about in ML have this property

• What do we do if ɸ has infinite dimensions?
• We can’t just compute with it normally!

�(i)T�(j) = K(i, j)

Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

• Typically, we want to find a family of feature maps ɸt such that

K(x, y) ⇡ �(x)T�(y)

�D : Rd ! RD

lim
D!1

�D(x)T�D(y) = K(x, y)

Types of approximate feature maps

• Deterministic feature maps
• Choose a fixed-a-priori method of approximating the kernel
• Generally not very popular because of the way they scale with dimensions

• Random feature maps
• Choose a feature map at random (typically each feature is independent) such that

• Then prove with high probability that over some region of interest

E
⇥
�(x)T�(y)

⇤
= K(x, y)

���(x)T�(y)�K(x, y)
��  ✏

Types of Approximate Features (continued)

• Orthogonal randomized feature maps
• Intuition behind this: if we have a feature map where for some i and j

then we can’t actually learn much from having both features.
• Strategy: choose the feature map at random, but subject to the constraint that the

features be “orthogonal” in some way.

• Quasi-random feature maps
• Generate features using a low-discrepancy sequence rather than true randomness

eTi �(x) ⇡ eTj �(x)

Adaptive Feature Maps

• Everything before this didn’t take the data into account

• Adaptive feature maps look at the actual training set and try to
minimize the kernel approximation error using the training set as a guide
• For example: we can do a random feature map, and then fine-tune the

randomness to minimize the empirical error over the training set
• Gaining in popularity

• Also, neural networks can be thought of as adaptive feature maps.

Systems Tradeoffs

• Lots of tradeoffs here

• Do we spend more work up-front constructing a more sophisticated
approximation, to save work on learning algorithms?

• Would we rather scale with the data, or scale to more complicated
problems?

• Another task for hyperparameter optimization

Demo

Dimensionality reduction

Linear models are linear in the dimension

• But what if the dimension d is very large?
• Example: if we have a high-dimensional kernel map

• It can be difficult to run SGD when the dimension is very
high even if the cost is linear
• This happens for other learning algorithms too

Idea: reduce the dimension

• If high dimension is the problem, can we just reduce d?

• This is the problem of dimensionality reduction.

•Dimensionality reduction benefits both statistics and systems
• Statistical side: can help with generalization by identifying

important subset of features
• Systems side: lowers compute cost

Techniques for dimensionality reduction

• Feature selection by hand
• Simple method
• But costly in terms of human effort

• Principal component analysis (PCA)
• Identify the directions of highest variance in the dataset
• Then project onto those directions
• Many variants: e.g. kernel PCA

More techniques for dimensionality reduction

• Locality-sensitive hashing (LSH)
• Hash input items into buckets so close-by elements map into the

same buckets with high probability
• Many methods of doing this too

• Johnson-Lindenstrauss transform (random projection)
• General method for reducing dimensionality of any dataset
• Just choose a random subspace and project onto that subspace

Johnson-Lindenstrauss lemma

Consequences of J-L transform

•We only need O(log(m) / ε2) dimensions to map a dataset of
size m with relative distance accuracy.
• No matter what the size of the input dataset was!

• This is a very useful result for many applications
• Provides a generic way of reducing the dimension with guarantees

• But there are more specialized data-dependent ways of
doing dimensionality reduction that can work better.

Questions

• Upcoming things:
• Paper 2a or 2b review due tonight
• Paper 3 in class on Wednesday
• Start thinking about the class project
• It will come faster than you think!

