Acceleration and Momentum

CS6787 Lecture 3 — Fall 2018

First, some announcements

- Presentation length reduced to $\mathbf{1 5 - 2 0}$ mins
- To make more time for discussion
- Please prepare for 15 minutes, to allow time for questions
- This week's reviews extended to be due on Wednesday.
- Since we left off discussion until today
- Two late days available as usual

Parameters for paper reviews

- Paper reviews should be about one page (single-spaced) in length.
- The review should roughly mirror what an actual conference review would look like
- Although you don't need to assign scores or anything like that
- In particular you should at least:

1. Summarize the paper
2. Discuss the paper's strengths and weaknesses
3. Discuss the paper's impact

Paper 1b Discussion

Acceleration and Momentum

CS6787 Lecture 3 — Fall 2018

How does the step size affect convergence?

- Let's go back to gradient descent

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

- Simplest possible case: a quadratic function

$$
\begin{gathered}
f(x)=\frac{1}{2} x^{2} \\
x_{t+1}=x_{t}-\alpha x_{t}=(1-\alpha) x_{t}
\end{gathered}
$$

Step size vs. convergence: graphically

What if the curvature is different?

$$
f(x)=2 x^{2} \quad x_{t+1}=x_{t}-4 \alpha x_{t}=(1-4 \alpha) x_{t}
$$

Step size vs. curvature

- For these one-dimensional quadratics, how we should set the step size depends on the curvature
- More curvature \rightarrow smaller ideal step size
- What about higher-dimensional problems?
- Let's look at a really simple quadratic that's just a sum of our examples.

$$
f(x, y)=\frac{1}{2} x^{2}+2 y^{2}
$$

Simple two dimensional problem

$$
f(x, y)=\frac{1}{2} x^{2}+2 y^{2}
$$

- Gradient descent:

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right] } & =\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]-\alpha\left[\begin{array}{c}
x_{t} \\
4 y_{t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-\alpha & 0 \\
0 & 1-4 \alpha
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]
\end{aligned}
$$

What's the convergence rate?

- Look at the worst-case contraction factor of the update

- Contraction is maximum of previous two values.

Convergence of two-dimensional quadratic

What does this example show?

- We'd like to set the step size larger for dimension with less curvature, and smaller for the dimension with more curvature.
- But we can't, because there is only a single step-size parameter.
- There's a trade-off
- Optimal convergence rate is substantially worse than what we'd get in each scenario individually - individually we converge in one iteration.

For general quadratics

- For PSD symmetric A,

$$
f(x)=\frac{1}{2} x^{T} A x
$$

- Gradient descent has update step

$$
x_{t+1}=x_{t}-\alpha A x_{t}=(I-\alpha A) x_{t}
$$

- What does the convergence rate look like in general?

Convergence rate for general quadratics

$$
\begin{aligned}
\max _{x} \frac{\|(I-\alpha A) x\|}{\|x\|} & =\max _{x} \frac{1}{\|x\|}\left\|\left(I-\alpha \sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}\right) x\right\| \\
& =\max _{x} \frac{\left\|\sum_{i=1}^{n}\left(1-\alpha \lambda_{i}\right) u_{i} u_{i}^{T} x\right\|}{\left\|\sum_{i=1}^{n} u_{i} u_{i}^{T} x\right\|} \\
& =\max _{i}\left|1-\alpha \lambda_{i}\right| \\
& =\max ^{\left(1-\alpha \lambda_{\min }, \alpha \lambda_{\max }-1\right)}
\end{aligned}
$$

Optimal convergence rate

- Minimize:

$$
\max \left(1-\alpha \lambda_{\min }, \alpha \lambda_{\max }-1\right)
$$

- Optimal value occurs when

$$
1-\alpha \lambda_{\min }=\alpha \lambda_{\max }-1 \Rightarrow \alpha=\frac{2}{\lambda_{\max }+\lambda_{\min }}
$$

- Optimal rate is

$$
\max \left(1-\alpha \lambda_{\min }, \alpha \lambda_{\max }-1\right)=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}
$$

What affects this optimal rate?

$$
\begin{aligned}
\text { rate } & =\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }} \\
& =\frac{\lambda_{\max } / \lambda_{\min }-1}{\lambda_{\max } / \lambda_{\min }+1} \\
& =\frac{\kappa-1}{\kappa+1} .
\end{aligned}
$$

- Here, κ is called the condition number of the matrix \mathbf{A}.

$$
\kappa=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

- Problems with larger condition numbers converge slower.
- Called poorly conditioned.

Poorly conditioned problems

- Intuitively, these are problems that are highly curved in some directions but flat in others
- Happens pretty often in machine learning
- Measure something unrelated \rightarrow low curvature in that direction
- Also affects stochastic gradient descent
- How do we deal with this?

Momentum

Motivation

- Can we tell the difference between the curved and flat directions using information that is already available to the algorithm?
- Idea: in the one-dimensional case, if the gradients are reversing sign, then the step size is too large
- Because we're over-shooting the optimum
- And if the gradients stay in the same direction, then step size is too small
- Can we leverage this to make steps smaller when gradients reverse sign and larger when gradients are consistently in the same direction?

Polyak Momentum

- Add extra momentum term to gradient descent

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)+\beta\left(x_{t}-x_{t-1}\right)
$$

- Intuition: if current gradient step is in same direction as previous step, then move a little further in that direction.
- And if it's in the opposite direction, move less far.
- Also known as the heavy ball method.

Momentum for 1D Quadratics

$$
f(x)=\frac{\lambda}{2} x^{2}
$$

- Momentum gradient descent gives

$$
\begin{aligned}
x_{t+1} & =x_{t}-\alpha \lambda x_{t}+\beta\left(x_{t}-x_{t-1}\right) \\
& =(1+\beta-\alpha \lambda) x_{t}-\beta x_{t-1}
\end{aligned}
$$

Characterizing momentum for 1D quadratics

- Start with $x_{t+1}=(1+\beta-\alpha \lambda) x_{t}-\beta x_{t-1}$
- Trick: let $x_{t}=\beta^{t / 2} z_{t}$

$$
\begin{gathered}
\beta^{(t+1) / 2} z_{t+1}=(1+\beta-\alpha \lambda) \beta^{t / 2} z_{t}-\beta \cdot \beta^{(t-1) / 2} z_{t-1} \\
z_{t+1}=\frac{1+\beta-\alpha \lambda}{\sqrt{\beta}} z_{t}-z_{t-1}
\end{gathered}
$$

Characterizing momentum (continued)

- Let

$$
u=\frac{1+\beta-\alpha \lambda}{2 \sqrt{\beta}}
$$

- Then we get the simplified characterization

$$
z_{t+1}=2 u z_{t}-z_{t-1}
$$

- This is a degree- \boldsymbol{t} polynomial in \mathbf{u}

Chebyshev Polynomials

- If we initialize such that $z_{0}=1, z_{1}=u$ then these are a special family of polynomials called the Chebyshev polynomials

$$
z_{t+1}=2 u z_{t}-z_{t-1}
$$

- Standard notation:

$$
T_{t+1}(u)=2 u T_{t}(u)-T_{t-1}(u)
$$

- These polynomials have an important property: for all \mathbf{t}

$$
-1 \leq u \leq 1 \Rightarrow-1 \leq z_{t} \leq 1
$$

Chebyshev Polynomials

$$
T_{0}(u)=1
$$

Chebyshev Polynomials

$$
T_{1}(u)=u
$$

Chebyshev Polynomials

$$
T_{2}(u)=2 u^{2}-1
$$

Chebyshev Polynomials

Chebyshev Polynomials

Chebyshev Polynomials

Chebyshev Polynomials

Characterizing momentum (continued)

- What does this mean for our 1D quadratics?
- Recall that we let $x_{t}=\beta^{t / 2} z_{t}$

$$
\begin{aligned}
x_{t} & =\beta^{t / 2} \cdot x_{0} \cdot T_{t}(u) \\
& =\beta^{t / 2} \cdot x_{0} \cdot T_{t}\left(\frac{1+\beta-\alpha \lambda}{2 \sqrt{\beta}}\right)
\end{aligned}
$$

- So

$$
-1 \leq \frac{1+\beta-\alpha \lambda}{2 \sqrt{\beta}} \leq 1 \Rightarrow\left|x_{t}\right| \leq \beta^{t / 2}\left|x_{0}\right|
$$

Consequences of momentum analysis

- Convergence rate depends only on momentum parameter β
- Not on step size or curvature.
- We don't need to be that precise in setting the step size
- It just needs to be within a window
- Pointed out in "YellowFin and the Art of Momentum Tuning" by Zhang et. al.
- If we have a multidimensional quadratic problem, the convergence rate will be the same in all directions
- This is different from the gradient descent case where we had a trade-off

Choosing the parameters

- How should we set the step size and momentum parameter if we only have bounds on λ ?
- Need:

$$
-1 \leq \frac{1+\beta-\alpha \lambda}{2 \sqrt{\beta}} \leq 1
$$

- Suffices to have:

$$
-1=\frac{1+\beta-\alpha \lambda_{\max }}{2 \sqrt{\beta}} \text { and } \frac{1+\beta-\alpha \lambda_{\min }}{2 \sqrt{\beta}}=1
$$

Choosing the parameters (continued)

- Adding both equations:

$$
\begin{gathered}
0=\frac{2+2 \beta-\alpha \lambda_{\max }-\alpha \lambda_{\min }}{2 \sqrt{\beta}} \\
0=2+2 \beta-\alpha \lambda_{\max }-\alpha \lambda_{\min } \\
\alpha=\frac{2+2 \beta}{\lambda_{\max }+\lambda_{\min }}
\end{gathered}
$$

Choosing the parameters (continued)

- Subtracting both equations:

$$
\begin{gathered}
\frac{1+\beta-\alpha \lambda_{\min }-1-\beta+\alpha \lambda_{\max }}{2 \sqrt{\beta}}=2 \\
\frac{\alpha\left(\lambda_{\max }-\lambda_{\min }\right)}{2 \sqrt{\beta}}=2
\end{gathered}
$$

Choosing the parameters (continued)

- Combining these results:

$$
\alpha=\frac{2+2 \beta}{\lambda_{\max }+\lambda_{\min }} \quad \frac{\alpha\left(\lambda_{\max }-\lambda_{\min }\right)}{2 \sqrt{\beta}}=2
$$

$$
\frac{2+2 \beta}{\lambda_{\max }+\lambda_{\min }} \cdot \frac{\left(\lambda_{\max }-\lambda_{\min }\right)}{2 \sqrt{\beta}}=2
$$

$$
0=1-2 \sqrt{\beta} \frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}+\beta
$$

Choosing the parameters (continued)

- Quadratic formula:

$$
0=1-2 \sqrt{\beta} \frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}+\beta
$$

$$
\begin{aligned}
\sqrt{\beta} & =\frac{\kappa+1}{\kappa-1}-\sqrt{\left(\frac{\kappa+1}{\kappa-1}\right)^{2}-1} \\
& =\frac{\kappa+1}{\kappa-1}-\sqrt{\frac{4 \kappa}{\kappa^{2}-2 \kappa+1}} \\
& =\frac{\kappa+1}{\kappa-1}-\frac{2 \sqrt{\kappa}}{\kappa-1}=\frac{(\sqrt{\kappa}-1)^{2}}{\kappa-1}=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
\end{aligned}
$$

Gradient Descent versus Momentum

- Recall: gradient descent had a convergence rate of

$$
\frac{\kappa-1}{\kappa+1}
$$

- But with momentum, the optimal rate is

$$
\sqrt{\beta}=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
$$

- This is called convergence at an accelerated rate

Demo

Setting the parameters

- How do we set the momentum in practice for machine learning?
- One method: hyperparameter optimization
- Another method: just set $\beta=0.9$
- Works across a range of problems
- Actually quite popular in deep learning

Nesterov momentum

What about more general functions?

- Previous analysis was for quadratics
- Does this work for general convex functions?
- Answer: not in general
- We need to do something slightly different

Nesterov Momentum

- Slightly different rule

$$
\begin{aligned}
x_{t+1} & =y_{t}-\alpha \nabla f\left(y_{t}\right) \\
y_{t+1} & =x_{t+1}+\beta\left(x_{t+1}-x_{t}\right)
\end{aligned}
$$

- Main difference: separate the momentum state from the point that we are calculating the gradient at.

Nesterov Momentum Analysis

- Converges at an accelerated rate for ANY convex problem

$$
\sqrt{\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}}}
$$

- Optimal assignment of the parameters:

$$
\alpha=\frac{1}{\lambda_{\max }}, \beta=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
$$

Nesterov Momentum is Also Very Popular

- People use it in practice for deep learning all the time
- Significant speedups in practice

Demo

What about SGD?

- All our above analysis was for gradient descent
- But momentum still produces empirical improvements when used with stochastic gradient descent
- And we'll see how in one of the papers we're reading on Wednesday

Questions?

- Upcoming things
- Paper 1 review due Wednesday
- Next paper presentation on Wednesday

