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Step Sizes and Convergence



Where we left off

• Stochastic gradient descent (with fixed learning rate)

• Much faster per iteration than gradient descent
• Because we don’t have to process the entire training set

• But converges to a noise ball (for strongly convex problems)
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Controlling the accuracy

• Want the noise ball to be as small as possible for accurate solutions

• Noise ball proportional to the step size/learning rate

• So should we make the step size as small as possible?
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Effect of  step size on convergence

• Let’s go back to the convergence rate proof  for SGD
• From the previous lecture, we have

• If  we’re far from the noise ball i.e.
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Effect of  step size on convergence (continued)

• So to contract by a factor of  C, we need to run T steps, where
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The Full Effect of  Step Size

• Noise ball proportional to the step size

• Convergence time inversely proportional to the step size

• So there’s a trade-off !
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Demo



Can we get the best of  both worlds?

• When do we want the step size to be large?
• At the beginning of  execution?      Near the end?    Both?

• When do we want the step size to be small?
• At the beginning of  execution?      Near the end?    Both?

• What about using a decreasing step size scheme?

At the beginning of  execution! 

Near the end! 



SGD with Varying Step Size

• Allow the step size to vary over time

• Turns out this is the standard in basically all machine learning!

• Two ways to do it:
• Chosen a priori step sizes — step size doesn’t depend on measurements
• Adaptive step sizes — choose step size based on measurements & heuristics

xt+1 = xt � ↵trf(xt; yit)



Optimal Step Sizes for Convex Objectives

• Can we use math to choose a step size?
• Start with our previous bound

• Right side is minimized when
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Optimal Step Sizes (continued)
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Optimal Step Sizes (continued)
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Optimal Step Sizes (continued)

• Sometimes called a 1/T rate.
• Slower than the linear rate of  gradient descent, for convex problems.
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Optimal Step Sizes (continued)

• Substitute back in to find how to set the step size:

• This is a pretty common simple scheme
• General form is
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Demo



Have we solved step sizes for SGD forever?

• No.

• We don’t usually know what                             are
• Even if  the problem is convex

• This “optimal” rate optimizes the upper bound on the expected 
distance-squared to the optimum
• But sometimes this bound is loose, and other step size schemes might do better

µ, L, M , and ⇢0



What if  we don’t know the parameters?

• One idea: still use a step size scheme of  the form

• Choose parameters                 via some other method
• For example, hand-tuning — which doesn’t scale

• Can we do this automatically?
• Yes! This is an example of  hyperparameter optimization
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Other Techniques

• Decrease the step size in epochs

• Still asymptotically                        but step size decreases in discrete steps

• Useful for parallelization and saves a little compute

• Per-parameter learning rates — e.g. AdaGrad
• Replace scalar ⍺ with diagonal matrix A.

• Helps with poorly scaled problems
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Mini-Batching



Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something intermediate?
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Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of  all subsets of  {1, … , N} 
of  size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent
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How does runtime cost of  Mini-Batch 
compare to SGD and Gradient Descent?
• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster than SGD?
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Mini-Batch SGD Converges

• Start by breaking up the update rule into expected update and noise

• Second moment bound
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

• Because we sampled B uniformly at random, for i ≠ j

• So we can bound our square error term as
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

• Compared with SGD, squared error term decreased by a factor of  b



Mini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of  size

• Since mini-batching decreases error term by a factor of  b, it will have

• Noise ball smaller by the same factor! 
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Advantages of  Mini-Batch (reprise) 

• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic gradient descent
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How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a b-times-as-

accurate answer
• But we could have gotten a b-times-as-accurate answer by just running SGD for 

b times as many steps with a step size of  ⍺/b.

• But it still makes sense to run it for systems and statistical reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for metaparameter optimization



Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based Training of  Deep 

Architectures,” Bengio 2012.



Overfitting,
Generalization Error, and 
Regularization



Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this distribution
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Overfitting

• Minimizing the training loss doesn't generally minimize the expected 
loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training set and the 
expected loss on new examples is called the generalization error

• Even a model that has high accuracy on the training set can have terrible 
performance on new examples
• Phenomenon is called overfitting



Demo



How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with little or no extra 
computational cost?

• Notice from the demo that some loss functions do better than others
• Can we modify our loss function to prevent overfitting?



Regularization

• Add an extra regularization term to the objective function

• Most popular type: L2 regularization

• Also popular: L1 regularization
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Benefits of  Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting
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Demo



How to choose the regularization parameter?

• One way is to use an independent validation set to estimate the test 
error, and set the regularization parameter manually so that it is high 
enough to avoid overfitting
• This is what we saw in the demo

• But doing this naively can be computationally expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization



More general forms of  regularization

• Regularization is used more generally to describe anything 
that helps prevent overfitting
• By biasing learning by making some models more desirable a priori

•Many techniques that give throughput improvements also have 
a regularizing effect
• Sometimes: a win-win of  better statistical and hardware performance



Early Stopping



Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very large 
(asymptotically infinite) number of  points from it, then run stochastic 
gradient descent on that training set for only N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large



Consider a second setting

• Setting 1: we have a distribution ɸ and we sample a very large 
(asymptotically infinite) number of  points from it, then run stochastic 
gradient descent on that training set for only N iterations.

• Setting 2: we have a distribution ɸ and we sample N points from it, then 
run stochastic gradient descent using each of  these points exactly once.

• What is the difference between the output of  SGD in these two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit



Early Stopping

• Motivation: if  we only use each training example once for SGD, then we 
can’t overfit.

• So if  we only use each example a few times, we probably won’t overfit
too much.

• Early stopping: just stop running SGD before it converges.



Benefits of  Early Stopping

• Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make systems run faster

•Helps with overfitting



How Early to Stop

• You’ll see this in detail in one of  next Wednesday’s papers.

• Yet another application of  hyperparameter tuning.



Questions?

• Upcoming things
• Labor day next Monday — no lecture
• Paper Presentation #1 on Wednesday — read paper before class


