Simple Techniques for
Improving SGD

CS6787 Lecture 2 — Fall 2018

Step Sizes and Convergence

Where we left off

* Stochastic gradient descent (with fixed learning rate)
W1 = wy — aV f(wy; x;,)

* Much faster per iteration than gradient descent

* Because we don’t have to process the entire training set

* But converges to a noise ball (for strongly convex problems)

M
lim E [|fwr — w*||2] < ——
T— o0 210 — Qi

Controlling the accuracy

* Want the noise ball to be as small as possible for accurate solutions

* Noise ball proportional to the step size/learning rate

M
lim E [|wr —w*|?] < ——— = O(a)
T'— 00 2,u — al

* So should we make the step size as small as possible?

Ettect ot step size on convergence

* Let’s go back to the convergence rate proof for SGD

* From the previous lecture, we have
B [lwees - w*?] < (1 - ap)E [y — w*[2] +a2M.

2aM
L

B [lwers — w?] < (1— ap®)E [[lwe — 0" |?] + S [Ju, — w|?]

* If we’re far from the noise ball i.e. E [|jw; — w*[|?] >

FEftect of step size on convergence (continued)

E [[[wiy1 —w*||?] < (1— ap®)E [[lwy — w*||?] + %E lws — w*||]
< 1—%)1@[“%—@0*”2} if < 1
< exp (=) B [Jlwy — v 7]

* So to contract by a factor of C, we need to run T steps, where

T 2
1:exp(oz,;)C(:)T:—logC
QL

The Full Etfect of Step Size

* Noise ball proportional to the step size

alM

lim E [||lwr —w*|?] < 5 = O(a)
T — o0 210 — Qi
* Convergence time inversely proportional to the step size
2
T'=—1logC
aupl

* So there’s a trade-off!

Demo

Can we get the best of both worlds?

* When do we want the step size to be large?
* At the beginning of execution! Near the end? Both?

* When do we want the step size to be small?
* At the beginning of execution? Near the end! Both?

* What about using a decreasing step size scheme?

SGD with Varying Step Size

* Allow the step size to vary over time

Tir1 = Tp — @V [(Te5Yi,)
* Turns out this is the standard in basically all machine learning!
* Two ways to do it:

* Chosen a priori step sizes — step size doesn’t depend on measurements

* Adaptive step sizes — choose step size based on measurements & heuristics

Optimal Step Sizes tor Convex Objectives

* Can we use math to choose a step size?

* Start with our previous bound
E [Jlwer —w'12] < (1 - aun)B [[lw, — w*]|?] + a2M
< (1 — ap)E [|lwr — w*|]?] + af M (for azp < 1)

* Right side is minimized when

0= —pB [[lwy — w*||?] + 200 M & oy = S [y — |2

Optimal Step Sizes (continued)
Let pr = E [|lwy — w*||?]

pry1 < (1 — aup) pe + a; M

- (1= (o)) (o)

—) ’u2p2"u2p2
Poom ™t T ap ™
N22

— Pt 4M'0t

Optimal Step Sizes (continued)

Let py = E [Hwt - w*HQ] ! > | pi 'LLZ P%

Pt+1 M
_ L
D AM
1 TS

. 1 — —1 > 1] + > — 1 I
(since (1 —2)7" > z) ~ (4M
- 1 | 'u2
pe AM

Optimal Step Sizes (continued)
Let pr = E [|lwy — w*||?]

1 1 u?T AM pg
— 2 | = pT < 5
pr — po 4AM 4M + p=pod

* Sometimes called 2 1/T rate.

* Slower than the linear rate of gradient descent, for convex problems.

Optimal Step Sizes (continued)

* Substitute back in to find how to set the step size:

o b AMpo _ 2ppo
“TOM AM + p2pot - AM + p2pot - O(t)

* This 1s a pretty common simple scheme

* General form is
&
1+ ~t

(¢

Demo

Have we solved step sizes for SGD forever?

* No.

* We don’t usually know what p, L, M, and py are

* Even if the problem is convex

* This “optimal” rate optimizes the upper bound on the expected
distance-squared to the optimum

* But sometimes this bound is loose, and other step size schemes might do better

What if we don’t know the parameters?

* One idea: still use a step size scheme of the form
%
1 4+ ~t

(¢

* Choose parameters oo and t via some other method
* For example, hand-tuning — which doesn’t scale

* Can we do this automatically?

* Yes! This 1s an example of hyperparameter optimization

Other Techniques

* Decrease the step size in epochs
* Still asymptotically Oy = % but step size decreases in discrete steps

* Useful for parallelization and saves a little compute

* Per-parameter learning rates — e.g. AdaGrad

* Replace scalar a with diagonal matrix A.

Tt41 = Tt — AVf(:Et; yqzt)

* Helps with poortly scaled problems

Mini-Batching

Gradient Descent vs. SGD

* Gradient descent: all examples at once
Wil = Wt — Gy g V f(wye; x;)

* Stochastic gradient descent: one example at a time
w1 = wy — aV f(we; @i,)

* Is it really all or nothing? Can we do something intermediate?

Mini-Batch Stochastic Gradient Descent

* An intermediate approach

1
Wt41 = Wt — Oét|B ‘ Z Vf(wﬁxi)
t

where B, is sampled uniformly from the set of all subsets of {1, ..., N}
of size b.

* The b parameter is the batch size
* Typically choose b << N.

* Also called mini-batch gradient descent

How does runtime cost of Mini-Batch
compare to SGD and Gradient Descent?

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* But takes more time for each update than SGD
* So what’s the benefit?

* It’s more like gradient descent, so maybe it converges faster than SGD?

Mini-Batch SGD Converges

* Start by breaking up the update rule into expected update and noise

W41 — W

e Second moment bound

E [|[wiy1 — w”||]

+aoE

= wp — w* — oy (Vh(w) — Vh(w™))

Z (V f(wg; ;) — Vh(wy))

ZEBt

1

By

— W — oy (Vh(wt) — Vh(w*)) HQ]

S (Vi (wis) — Vh(w,))

1€ By

Mini-Batch SGD Converges (continued)

‘B%' S (VS (wrs i) — Vh(wy)

1€ By

=K

1
| By

> a

1€ By

N \ T N .
(Z @'Ai> (Z 5jAj) - B2
i=1 j=1

o7

1

E
| By |2

N

Z Bi A

1=1

N N |
D) BiBATA,

1=1 g=1

Mini-Batch SGD Converges (continued)

* Because we sampled B uniformly at random, for i # j

b b—1
E[ﬁzﬂj]:P(ieB/\jeB):P(z'eB)P(jeB\z‘eB):N-N_1
b
21 _ P (s _ Y
E[ﬁi}—P(zEB)—N
* So we can bound our square error term as
i -
1
E |l t,z (Vf(wiz) = Vhw)| | = orE ZZMJATA
i 1€ By il z 1 9=1

1 bb—1) 1 R

Mini-Batch SGD Converges (continued)

B 2 (VHwisa) = Vhtw) | | = 55 b”ZATA +ZHA "

1€ By i#£]

b h—
— P Ly, +Z(1—N—1) A7

1=1 5=1

L | R
1 b—1 N —b

- _F 1= 2=) a2 = E[S A
0+ 3 (1) 1807 = o |

Mini-Batch SGD Converges (continued)

<

1€ By

N —b
b(N — 1)
N —b
b(N — 1)
M
b

1
E @ Z (Vf(wg; i) — Vh(wy))

- M

o
E |~ D NIV f(wes i) — Vh(wy)])?
Y =1

N —b

(N — 1)

] & '
NZHA@HZ
_ 1=1 _

* Compared with SGD, squared error term decreased by a factor of b

Mini-Batch SGD Converges (continued)

* Recall that SGD converged to a noise ball of size

. aM
lim E |[|wr — w*||?] <
T—00 21 — ouft?
* Since mini-batching decreases error term by a factor of b, it will have
M
lim E [|wr — w*]?] < ——
T— 00 (2 — ap?)b

* Noise ball smaller by the same factor!

Advantages of Mini-Batch (reprise)

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* Converges to a smaller noise ball than stochastic gradient descent

alM
lim E —w*?] <
Tooo flwr —wF] < (2 — ap?)b

How to choose the batch size?

* Mini-batching is not a free win

* Narvely, compared with SGD, 1t takes b times as much effort to get a b-times-as-
accurate answer

* But we could have gotten a b-times-as-accurate answer by just running SGD for
b times as many steps with a step size of a/b.

* But 1t still makes sense to run it for systems and statistical reasons
* Mini-batching exposes more parallelism
* Mini-batching lets us estimate statistics about the full gradient more accurately

* Another use case for metaparameter optimization

Mini-Batch SGD is very widely used

* Including in basically all neural network training

* b = 32 is a typical default value for batch size

* From “Practical Recommendations for Gradient-Based Training of Deep
Architectures,” Bengio 2012.

Overtitting,
Generalization Error, and
Regularization

Minimizing Training Loss 1s Not our Real Goal

* Training loss looks like

() =~ Flwiz)

* What we actually want to minimize 1s expected loss on new examples

* Drawn from some real-world distribution ¢

h(w) = Egg [f(w;)]

* Typically, assume the training examples were drawn from this distribution

Overtitting

* Minimizing the training loss doesn't generally minimize the expected
loss on new examples

* They are two different objective functions after all

* Difference between the empirical loss on the training set and the
expected loss on new examples is called the generalization error

* Even a model that has high accuracy on the training set can have terrible
performance on new examples

* Phenomenon is called overfitting

Demo

How to address overtitting

* Many, many techniques to deal with overfitting

* Have varying computational costs

* But this is a systems course...so what can we do with little or no extra
computational cost?

 Notice from the demo that some loss functions do better than others

* Can we modify our loss function to prevent overtitting?

Regularization

* Add an extra regularization term to the objective function

* Most popular type: L2 regularization

N N d
1 1
hw) = = 30 flws) + o2 wld = 3 flwiz) +0° Y a2
1=1 1=1 k=1

* Also popular: L1 regularization

1 N 1 N d
hw) = + 3 fwiz) +llwl = = S fwizs) +43
1=1 1=1 k=1

Benetits of Regularization

* Cheap to compute

* For SGD and L2 regularization, there’s just an extra scaling
_ 2 :
Wii+1 = (1 — 204150')wt — atVf(wt,a:‘it)

* L2 regularization makes the objective strongly convex

* This makes it easier to get and prove bounds on convergence

* Helps with ovetfitting

Demo

How to choose the regularization parameter?

* One way is to use an independent validation set to estimate the test
error, and set the regularization parameter manually so that it 1s high
enough to avoid overtitting

e This is what we saw 1n the demo

* But doing this naively can be computationally expensive

* Need to re-run learning algorithm many times

* Yet another use case for hyperparameter optimization

More general forms of regularization

* Regularization 1s used more generally to describe anything
that helps prevent overtitting

* By biasing learning by making some models more desirable a prior:

* Many techniques that give throughput improvements also have
a regularizing etffect

* Sometimes: a win-win of better statistical and hardware performance

Harly Stopping

Asymptotically large training sets

* Setting 1: we have a distribution ¢ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
oradient descent on that training set for only N iterations.

* Can our algorithm in this setting overfit?

* No, because its training set is asymptotically equal to the true distribution.

* Can we compute this etficiently?

* No, because its training set is asymptotically infinitely large

Consider a second setting

* Setting 1: we have a distribution ¢ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
oradient descent on that training set for only N iterations.

* Setting 2: we have a distribution ¢ and we sample N points from it, then
run stochastic gradient descent using each of these points exactly once.

* What 1s the difference between the output of SGD in these two settings?
* Asymptotically, there’s no difference!

* So SGD in Setting 2 will also never overfit

Early Stopping

* Motivation: if we only use each training example once for SGD, then we
can’t overtit.

* So if we only use each example a few times, we probably won’t overfit
too much.

* Early stopping: just stop running SGD before it converges.

Benetits of Early Stopping

* Cheap to compute
* Literally just does less work
* It seems like the technique was designed to make systems run faster

* Helps with overfitting

How Early to Stop

* You’ll see this in detail in one of next Wednesday’s papers.

* Yet another application of hyperparameter tuning.

Questions?

* Upcoming things
* Labor day next Monday — no lecture
* Paper Presentation #1 on Wednesday — read paper before class

