
Simple Techniques for
Improving SGD

CS6787 Lecture 2 — Fall 2018

Step Sizes and Convergence

Where we left off

• Stochastic gradient descent (with fixed learning rate)

• Much faster per iteration than gradient descent
• Because we don’t have to process the entire training set

• But converges to a noise ball (for strongly convex problems)

wt+1 = wt � ↵rf(wt;xit)

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

2µ� ↵µ2

Controlling the accuracy

• Want the noise ball to be as small as possible for accurate solutions

• Noise ball proportional to the step size/learning rate

• So should we make the step size as small as possible?

lim
T!1

E
⇥
kwT � w

⇤k2
⇤
 ↵M

2µ� ↵µ2
= O(↵)

Effect of step size on convergence

• Let’s go back to the convergence rate proof for SGD
• From the previous lecture, we have

• If we’re far from the noise ball i.e.

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵µ2)E

⇥
kwt � w⇤k2

⇤
+ ↵2M.

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵µ2)E

⇥
kwt � w⇤k2

⇤
+

↵µ

2
E
⇥
kwt � w⇤k2

⇤
.

E
⇥
kwt � w⇤k2

⇤
� 2↵M

µ

Effect of step size on convergence (continued)

• So to contract by a factor of C, we need to run T steps, where

1 = exp

✓
�↵µT

2

◆
C , T =

2

↵µ
logC

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵µ2)E

⇥
kwt � w⇤k2

⇤
+

↵µ

2
E
⇥
kwt � w⇤k2

⇤


⇣
1� ↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
if ↵µ < 1

 exp
⇣
�↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
.

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵µ2)E

⇥
kwt � w⇤k2

⇤
+

↵µ

2
E
⇥
kwt � w⇤k2

⇤


⇣
1� ↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
if ↵µ < 1

 exp
⇣
�↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
.

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵µ2)E

⇥
kwt � w⇤k2

⇤
+

↵µ

2
E
⇥
kwt � w⇤k2

⇤


⇣
1� ↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
if ↵µ < 1

 exp
⇣
�↵µ

2

⌘
E
⇥
kwt � w⇤k2

⇤
.

The Full Effect of Step Size

• Noise ball proportional to the step size

• Convergence time inversely proportional to the step size

• So there’s a trade-off !

T =
2

↵µ
logC

lim
T!1

E
⇥
kwT � w

⇤k2
⇤
 ↵M

2µ� ↵µ2
= O(↵)

Demo

Can we get the best of both worlds?

• When do we want the step size to be large?
• At the beginning of execution? Near the end? Both?

• When do we want the step size to be small?
• At the beginning of execution? Near the end? Both?

• What about using a decreasing step size scheme?

At the beginning of execution!

Near the end!

SGD with Varying Step Size

• Allow the step size to vary over time

• Turns out this is the standard in basically all machine learning!

• Two ways to do it:
• Chosen a priori step sizes — step size doesn’t depend on measurements
• Adaptive step sizes — choose step size based on measurements & heuristics

xt+1 = xt � ↵trf(xt; yit)

Optimal Step Sizes for Convex Objectives

• Can we use math to choose a step size?
• Start with our previous bound

• Right side is minimized when

E
⇥
kwt+1 � w⇤k2

⇤
 (1� ↵tµ)

2E
⇥
kwt � w⇤k2

⇤
+ ↵2

tM

 (1� ↵tµ)E
⇥
kwt � w⇤k2

⇤
+ ↵2

tM (for ↵tµ < 1)

0 = �µE
⇥
kwt � w⇤k2

⇤
+ 2↵tM , ↵t =

µ

2M
E
⇥
kwt � w⇤k2

⇤
0 = �µE

⇥
kwt � w⇤k2

⇤
+ 2↵tM , ↵t =

µ

2M
E
⇥
kwt � w⇤k2

⇤

Optimal Step Sizes (continued)

⇢t+1  (1� ↵tµ) ⇢t + ↵2
tM

=
⇣
1�

⇣ µ

2M
⇢t
⌘
µ
⌘
⇢t +

⇣ µ

2M
⇢t
⌘2

M

= ⇢t �
µ2

2M
⇢2t +

µ2

4M
⇢2t

= ⇢t �
µ2

4M
⇢2t

Let ⇢t = E
⇥
kwt � w⇤k2

⇤

⇢t+1  (1� ↵tµ) ⇢t + ↵2
tM

=
⇣
1�

⇣ µ

2M
⇢t
⌘
µ
⌘
⇢t +

⇣ µ

2M
⇢t
⌘2

M

= ⇢t �
µ2

2M
⇢2t +

µ2

4M
⇢2t

= ⇢t �
µ2

4M
⇢2t

Optimal Step Sizes (continued)

1

⇢t+1
�

✓
⇢t �

µ2

4M
⇢2t

◆�1

=
1

⇢t

✓
1� µ2

4M
⇢t

◆�1

� 1

⇢t

✓
1 +

µ2

4M
⇢t

◆

=
1

⇢t
+

µ2

4M
.

(since (1� z)�1 � 1 + z)

Let ⇢t = E
⇥
kwt � w⇤k2

⇤
1

⇢t+1
�

✓
⇢t �

µ2

4M
⇢2t

◆�1

=
1

⇢t

✓
1� µ2

4M
⇢t

◆�1

� 1

⇢t

✓
1 +

µ2

4M
⇢t

◆

=
1

⇢t
+

µ2

4M
.

Optimal Step Sizes (continued)

• Sometimes called a 1/T rate.
• Slower than the linear rate of gradient descent, for convex problems.

1

⇢T
� 1

⇢0
+

µ2T

4M
) ⇢T  4M⇢0

4M + µ2⇢0T

Let ⇢t = E
⇥
kwt � w⇤k2

⇤

1

⇢T
� 1

⇢0
+

µ2T

4M
) ⇢T  4M⇢0

4M + µ2⇢0T

↵t =
µ

2M
· 4M⇢0
4M + µ2⇢0t

=
2µ⇢0

4M + µ2⇢0t
=

1

⇥(t)

Optimal Step Sizes (continued)

• Substitute back in to find how to set the step size:

• This is a pretty common simple scheme
• General form is

↵t =
↵0

1 + �t

Demo

Have we solved step sizes for SGD forever?

• No.

• We don’t usually know what are
• Even if the problem is convex

• This “optimal” rate optimizes the upper bound on the expected
distance-squared to the optimum
• But sometimes this bound is loose, and other step size schemes might do better

µ, L, M , and ⇢0

What if we don’t know the parameters?

• One idea: still use a step size scheme of the form

• Choose parameters via some other method
• For example, hand-tuning — which doesn’t scale

• Can we do this automatically?
• Yes! This is an example of hyperparameter optimization

↵t =
↵0

1 + �t

↵0 and t

Other Techniques

• Decrease the step size in epochs

• Still asymptotically but step size decreases in discrete steps

• Useful for parallelization and saves a little compute

• Per-parameter learning rates — e.g. AdaGrad
• Replace scalar ⍺ with diagonal matrix A.

• Helps with poorly scaled problems

↵t =
1

⇥(t)

xt+1 = xt �Arf(xt; yit)

Mini-Batching

Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something intermediate?

wt+1 = wt � ↵t
1

N

NX

i=1

rf(wt;xi)

wt+1 = wt � ↵trf(wt;xit)

Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of all subsets of {1, … , N}
of size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

How does runtime cost of Mini-Batch
compare to SGD and Gradient Descent?
• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster than SGD?

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

Mini-Batch SGD Converges

• Start by breaking up the update rule into expected update and noise

• Second moment bound

wt+1 � w⇤ = wt � w⇤ � ↵t (rh(wt)�rh(w⇤))

� ↵t
1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

E
⇥
kwt+1 � w⇤k2

⇤
= E

⇥
kwt � w⇤ � ↵t (rh(wt)�rh(w⇤)) k2

⇤

+ ↵2
tE

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5

Mini-Batch SGD Converges (continued)

Let �i = rf(wt;xi)�rh(wt), and �i =

(
1 i 2 Bt

0 i /2 Bt

E

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5

= E

2

4
�����

1

|Bt|
X

i2Bt

�i

�����

2
3

5 =
1

|Bt|2
E

2

4
�����

NX

i=1

�i�i

�����

2
3

5

=
1

|Bt|2
E

2

4

NX

i=1

�i�i

!T
0

@
NX

j=1

�j�j

1

A

3

5 =
1

|Bt|2
E

2

4
NX

i=1

NX

j=1

�i�j�
T
i �j

3

5

Mini-Batch SGD Converges (continued)

• Because we sampled B uniformly at random, for i ≠ j

• So we can bound our square error term as

E [�i�j] = P (i 2 B ^ j 2 B) = P (i 2 B)P (j 2 B|i 2 B) =
b

N
· b� 1

N � 1

E
⇥
�2
i

⇤
= P (i 2 B) =

b

N

E

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5 =
1

|Bt|2
E

2

4
NX

i=1

NX

j=1

�i�j�
T
i �j

3

5

=
1

b2
E

2

4
X

i 6=j

b(b� 1)

N(N � 1)
�T

i �j +
NX

i=1

b

N
k�ik2

3

5

Mini-Batch SGD Converges (continued)

E

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5 =
1

bN
E

2

4 b� 1

N � 1

X

i 6=j

�T
i �j +

NX

i=1

k�ik2
3

5

=
1

bN
E

2

4 b� 1

N � 1

nX

i=1

nX

j=1

�T
i �j +

NX

i=1

✓
1� b� 1

N � 1

◆
k�ik2

3

5

=
1

bN
E

"
0 +

NX

i=1

✓
1� b� 1

N � 1

◆
k�ik2

#
=

N � b

bN(N � 1)
E

"
NX

i=1

k�ik2
#

Mini-Batch SGD Converges (continued)

• Compared with SGD, squared error term decreased by a factor of b

Mini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of size

• Since mini-batching decreases error term by a factor of b, it will have

• Noise ball smaller by the same factor!

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

2µ� ↵µ2

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

(2µ� ↵µ2)b

Advantages of Mini-Batch (reprise)

• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

(2µ� ↵µ2)b

How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a b-times-as-

accurate answer
• But we could have gotten a b-times-as-accurate answer by just running SGD for

b times as many steps with a step size of ⍺/b.

• But it still makes sense to run it for systems and statistical reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for metaparameter optimization

Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based Training of Deep

Architectures,” Bengio 2012.

Overfitting,
Generalization Error, and
Regularization

Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this distribution

h(w) =
1

N

NX

i=1

f(w;xi)

h̄(w) = Ex⇠� [f(w;x)]

Overfitting

• Minimizing the training loss doesn't generally minimize the expected
loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training set and the
expected loss on new examples is called the generalization error

• Even a model that has high accuracy on the training set can have terrible
performance on new examples
• Phenomenon is called overfitting

Demo

How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with little or no extra
computational cost?

• Notice from the demo that some loss functions do better than others
• Can we modify our loss function to prevent overfitting?

Regularization

• Add an extra regularization term to the objective function

• Most popular type: L2 regularization

• Also popular: L1 regularization

h(w) =
1

N

NX

i=1

f(w;xi) + �2kwk22 =
1

N

NX

i=1

f(w;xi) + �2
dX

k=1

x2
k

h(w) =
1

N

NX

i=1

f(w;xi) + �kwk1 =
1

N

NX

i=1

f(w;xi) + �
dX

k=1

kxkk

Benefits of Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting

wt+1 = (1� 2↵t�
2)wt � ↵trf(wt;xit)

Demo

How to choose the regularization parameter?

• One way is to use an independent validation set to estimate the test
error, and set the regularization parameter manually so that it is high
enough to avoid overfitting
• This is what we saw in the demo

• But doing this naively can be computationally expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization

More general forms of regularization

• Regularization is used more generally to describe anything
that helps prevent overfitting
• By biasing learning by making some models more desirable a priori

•Many techniques that give throughput improvements also have
a regularizing effect
• Sometimes: a win-win of better statistical and hardware performance

Early Stopping

Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
gradient descent on that training set for only N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large

Consider a second setting

• Setting 1: we have a distribution ɸ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
gradient descent on that training set for only N iterations.

• Setting 2: we have a distribution ɸ and we sample N points from it, then
run stochastic gradient descent using each of these points exactly once.

• What is the difference between the output of SGD in these two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit

Early Stopping

• Motivation: if we only use each training example once for SGD, then we
can’t overfit.

• So if we only use each example a few times, we probably won’t overfit
too much.

• Early stopping: just stop running SGD before it converges.

Benefits of Early Stopping

• Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make systems run faster

•Helps with overfitting

How Early to Stop

• You’ll see this in detail in one of next Wednesday’s papers.

• Yet another application of hyperparameter tuning.

Questions?

• Upcoming things
• Labor day next Monday — no lecture
• Paper Presentation #1 on Wednesday — read paper before class

