Simple Techniques for
Improving SGD

CS6787 Lecture 2 — Fall 2018



Step Sizes and Convergence



Where we left off

* Stochastic gradient descent (with fixed learning rate)
W1 = wy — aV f(wy; x;,)

* Much faster per iteration than gradient descent

* Because we don’t have to process the entire training set

* But converges to a noise ball (for strongly convex problems)
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Controlling the accuracy

* Want the noise ball to be as small as possible for accurate solutions

* Noise ball proportional to the step size/learning rate
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* So should we make the step size as small as possible?



Ettect ot step size on convergence

* Let’s go back to the convergence rate proof for SGD

* From the previous lecture, we have
B [lwees - w*?] < (1 - ap)E [y — w*[2] +a2M.

2aM
L

B [lwers — w?] < (1— ap®)E [[lwe — 0" |?] + S [Ju, — w|?]

* If we’re far from the noise ball i.e. E [|jw; — w*[|?] >



FEftect of step size on convergence (continued)
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* So to contract by a factor of C, we need to run T steps, where
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The Full Etfect of Step Size

* Noise ball proportional to the step size
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* Convergence time inversely proportional to the step size
2
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* So there’s a trade-off!



Demo



Can we get the best of both worlds?

* When do we want the step size to be large?
* At the beginning of execution! Near the end? Both?

* When do we want the step size to be small?
* At the beginning of execution?  Near the end! Both?

* What about using a decreasing step size scheme?



SGD with Varying Step Size

* Allow the step size to vary over time

Tir1 = Tp — @V [ (Te5Yi,)
* Turns out this is the standard in basically all machine learning!
* Two ways to do it:

* Chosen a priori step sizes — step size doesn’t depend on measurements

* Adaptive step sizes — choose step size based on measurements & heuristics



Optimal Step Sizes tor Convex Objectives

* Can we use math to choose a step size?

* Start with our previous bound
E [Jlwer —w'12] < (1 - aun)B [[lw, — w*]|?] + a2M
< (1 — ap)E [|lwr — w*|]?] + af M (for azp < 1)

* Right side is minimized when

0= —pB [[lwy — w*||?] + 200 M & oy = S [y — |2



Optimal Step Sizes (continued)
Let pr = E [|lwy — w*||?]
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Optimal Step Sizes (continued)
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Optimal Step Sizes (continued)
Let pr = E [|lwy — w*||?]

1 1 u?T AM pg
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* Sometimes called 2 1/T rate.

* Slower than the linear rate of gradient descent, for convex problems.



Optimal Step Sizes (continued)

* Substitute back in to find how to set the step size:

o b AMpo _ 2ppo
“TOM  AM + p2pot - AM + p2pot - O(t)

* This 1s a pretty common simple scheme

* General form is
&
1+ ~t

(¢



Demo



Have we solved step sizes for SGD forever?

* No.

* We don’t usually know what p, L, M, and py are

* Even if the problem is convex

* This “optimal” rate optimizes the upper bound on the expected
distance-squared to the optimum

* But sometimes this bound is loose, and other step size schemes might do better



What if we don’t know the parameters?

* One idea: still use a step size scheme of the form
%
1 4+ ~t
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* Choose parameters oo and t via some other method
* For example, hand-tuning — which doesn’t scale

* Can we do this automatically?

* Yes! This 1s an example of hyperparameter optimization



Other Techniques

* Decrease the step size in epochs
* Still asymptotically Oy = % but step size decreases in discrete steps

* Useful for parallelization and saves a little compute

* Per-parameter learning rates — e.g. AdaGrad

* Replace scalar a with diagonal matrix A.

Tt41 = Tt — AVf(:Et; yqzt)

* Helps with poortly scaled problems



Mini-Batching



Gradient Descent vs. SGD

* Gradient descent: all examples at once
Wil = Wt — Gy g V f(wye; x;)

* Stochastic gradient descent: one example at a time
w1 = wy — aV f(we; @i, )

* Is it really all or nothing? Can we do something intermediate?



Mini-Batch Stochastic Gradient Descent

* An intermediate approach

1
Wt41 = Wt — Oét|B ‘ Z Vf(wﬁxi)
t

where B, is sampled uniformly from the set of all subsets of {1, ..., N}
of size b.

* The b parameter is the batch size
* Typically choose b << N.

* Also called mini-batch gradient descent



How does runtime cost of Mini-Batch
compare to SGD and Gradient Descent?

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* But takes more time for each update than SGD
* So what’s the benefit?

* It’s more like gradient descent, so maybe it converges faster than SGD?



Mini-Batch SGD Converges

* Start by breaking up the update rule into expected update and noise

W41 — W

e Second moment bound

E [|[wiy1 — w”||]

+aoE

= wp — w* — oy (Vh(w) — Vh(w™))

Z (V f(wg; ;) — Vh(wy))

ZEBt

1

By

— W — oy (Vh(wt) — Vh(w*)) HQ]

S (Vi (wis ) — Vh(w,))

1€ By




Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

* Because we sampled B uniformly at random, for i # j

b b—1
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* So we can bound our square error term as
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Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)
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* Compared with SGD, squared error term decreased by a factor of b



Mini-Batch SGD Converges (continued)

* Recall that SGD converged to a noise ball of size

. aM
lim E |[|wr — w*||?] <
T—00 21 — ouft?
* Since mini-batching decreases error term by a factor of b, it will have
M
lim E [|wr — w*]?] < ——
T— 00 (2 — ap?)b

* Noise ball smaller by the same factor!



Advantages of Mini-Batch (reprise)

* Takes less time to compute each update than gradient descent
* Only needs to sum up b gradients, rather than N

* Converges to a smaller noise ball than stochastic gradient descent

alM
lim E —w*?] <
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How to choose the batch size?

* Mini-batching is not a free win

* Narvely, compared with SGD, 1t takes b times as much effort to get a b-times-as-
accurate answer

* But we could have gotten a b-times-as-accurate answer by just running SGD for
b times as many steps with a step size of a/b.

* But 1t still makes sense to run it for systems and statistical reasons
* Mini-batching exposes more parallelism
* Mini-batching lets us estimate statistics about the full gradient more accurately

* Another use case for metaparameter optimization



Mini-Batch SGD is very widely used

* Including in basically all neural network training

* b = 32 is a typical default value for batch size

* From “Practical Recommendations for Gradient-Based Training of Deep
Architectures,” Bengio 2012.



Overtitting,
Generalization Error, and
Regularization



Minimizing Training Loss 1s Not our Real Goal

* Training loss looks like

() =~ Flwiz)

* What we actually want to minimize 1s expected loss on new examples

* Drawn from some real-world distribution ¢

h(w) = Egg [f(w; )]

* Typically, assume the training examples were drawn from this distribution



Overtitting

* Minimizing the training loss doesn't generally minimize the expected
loss on new examples

* They are two different objective functions after all

* Difference between the empirical loss on the training set and the
expected loss on new examples is called the generalization error

* Even a model that has high accuracy on the training set can have terrible
performance on new examples

* Phenomenon is called overfitting



Demo



How to address overtitting

* Many, many techniques to deal with overfitting

* Have varying computational costs

* But this is a systems course...so what can we do with little or no extra
computational cost?

 Notice from the demo that some loss functions do better than others

* Can we modify our loss function to prevent overtitting?



Regularization

* Add an extra regularization term to the objective function

* Most popular type: L2 regularization

N N d
1 1
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* Also popular: L1 regularization
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Benetits of Regularization

* Cheap to compute

* For SGD and L2 regularization, there’s just an extra scaling
_ 2 :
Wii+1 = (1 — 204150' )wt — atVf(wt,a:‘it)

* L2 regularization makes the objective strongly convex

* This makes it easier to get and prove bounds on convergence

* Helps with ovetfitting



Demo



How to choose the regularization parameter?

* One way is to use an independent validation set to estimate the test
error, and set the regularization parameter manually so that it 1s high
enough to avoid overtitting

e This is what we saw 1n the demo

* But doing this naively can be computationally expensive

* Need to re-run learning algorithm many times

* Yet another use case for hyperparameter optimization



More general forms of regularization

* Regularization 1s used more generally to describe anything
that helps prevent overtitting

* By biasing learning by making some models more desirable a prior:

* Many techniques that give throughput improvements also have
a regularizing etffect

* Sometimes: a win-win of better statistical and hardware performance



Harly Stopping



Asymptotically large training sets

* Setting 1: we have a distribution ¢ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
oradient descent on that training set for only N iterations.

* Can our algorithm in this setting overfit?

* No, because its training set is asymptotically equal to the true distribution.

* Can we compute this etficiently?

* No, because its training set is asymptotically infinitely large



Consider a second setting

* Setting 1: we have a distribution ¢ and we sample a very large
(asymptotically infinite) number of points from it, then run stochastic
oradient descent on that training set for only N iterations.

* Setting 2: we have a distribution ¢ and we sample N points from it, then
run stochastic gradient descent using each of these points exactly once.

* What 1s the difference between the output of SGD in these two settings?
* Asymptotically, there’s no difference!

* So SGD in Setting 2 will also never overfit



Early Stopping

* Motivation: if we only use each training example once for SGD, then we
can’t overtit.

* So if we only use each example a few times, we probably won’t overfit
too much.

* Early stopping: just stop running SGD before it converges.



Benetits of Early Stopping

* Cheap to compute
* Literally just does less work
* It seems like the technique was designed to make systems run faster

* Helps with overfitting



How Early to Stop

* You’ll see this in detail in one of next Wednesday’s papers.

* Yet another application of hyperparameter tuning.



Questions?

* Upcoming things
* Labor day next Monday — no lecture
* Paper Presentation #1 on Wednesday — read paper before class



