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Final project guidelines



Abstract — Due in a Week

• Should be like an abstract for a paper
• Something that could (but doesn’t need to) be the abstract for your final report.

• Typical length: about 6–8 sentences
• Can be longer or shorter
• But it’s an advertisement/summary for your paper, not the paper itself

• Should fairly summarize your results, but does not have to be complete
• E.g. you can say something like “Our method improves throughput by X% over 

an existing method” if  you haven’t run the experiment yet.



Things to cover in an abstract

• Setting/Motivation
• What is the setting of the paper? Why should we care about it?

• Problem Statement/Scope
• Within this setting, what problem did you set out to solve in the paper?

• Approach/Methodology
• What did you do to solve the problem? What techniques did you develop?

• Results
• What did you observe? How did your techniques perform?

• Conclusion:
• What should we take away from your results? Why should we care about them?



An Example: HOGWILD!

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Setting/Motivation

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Problem Statement/Scope

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Approach/Methodology

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Results
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Conclusion

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Abstract Swap — Next Monday

• Goal: to learn how to write a great abstract
• Secondary goal: to see what other students’ projects are

• Submit your abstracts by 5:00 PM
• So that I can print them out and put them into a slide deck before class

• We will have an in-class feedback activity
• Like the project idea discussion activity
• May overflow into Wednesday



Questions?



Project Report Expectations



Formatting

• Report should be at least four pages, not including references

• Report should use ICML 2018 style or a similar style
• This is mostly to be fair about length

• Report should be structured appropriately
• For example: abstract, introduction, related work, main results, experiments
• Correctly formatted references page



Content — Overview

• You should have implemented a machine learning system
• This entails writing some code
• You should have some code to submit along with the report

• Either as a supplemental file, or as a link to a repository

• You should have used a technique we discussed in the course
• And it should be clear from the report which one you used

• You should have run throughput or wall-clock time experiments

• Your work should correspond to the proposal



Content — Conceptual

• The report should summarize the problem you are trying to solve
• Explain why your approach is a good idea or interesting to study
• Thesis statement clearly and concisely states the purpose of  the report

• The report should fairly acknowledge previous work
• And relate it to what you did

• The report should be clear and well-written
• Avoid grammar/spelling/punctuation issues that make the text difficult to read.

• The report should demonstrate knowledge/understanding of  the chosen 
technique beyond what we discussed in class



Content — Technical

• The main section of  the report should explain what you did
• And why you did it!

• Someone should be able to reproduce your results from the report

• The paper should be technically sound
• Any claims should be supported by theoretical analysis or experimental results

• Evaluate both the strengths and weaknesses of  the work



Content — Experimental

• The experiments should involve a fair comparison
• In terms of  systems performance, among two or more methods

• The report should explain the experimental results
• Why did this happen? Was it what you expected? What does this tell us?

• The results should be properly formatted
• At least one figure with a title and properly labeled axes
• Present things graphically whenever possible



Content — Impact

• The report should discuss the impact of  the results
• What does this tell us about how we should design systems in the future?

• The report should gesture at possibilities for future work



Questions?
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Sparsity Basics

• A sparse matrix has most of  its entries zero
• The fraction of  nonzero entries is called the density

• One way to make linear algebras operations faster
• Why does this help?

• But, it’s not that simple
• There are many pros to sparse computing for ML systems
• But there are also a lot of  cons



With Sparsity, Storage Matters!

• Unlike dense matrices, many different ways to store a sparse matrix
• COO — coordinate list
• CSR — compressed sparse row
• CSC — compressed sparse column

• What are the advantages and disadvantages of  these?



Demo



General rule of  thumb for performance

• For fixed vector dimension
• As density decreases, cost of  computations goes down
• But only starts being better than dense at around 10% for many operations
• Can improve this a bit with specialized hardware accelerators

• For fixed size of  data (measured in bytes)
• As density decreases, cost of  computations goes up
• In the limit of  extreme sparsity, you start using techniques from databases

• Or from graph computation



Where do we find sparsity in ML?

• In input training sets
• Many real-world phenomena are sparse. Examples?

• In models that we learn
• Particularly when we use L1 regression
• Also sometimes want to impose sparsity on our models a priori
• Intuition: sparse models less prone to overfitting

• In intermediate values used during computation
• For example, the output of  a ReLU activation function is typically sparse



Two Strategies for Leveraging Sparsity in Data

• Use sparse linear algebra/sparse computations
• Hopefully this will run faster
• You probably already know about this

• Use an embedding
• Map the sparse input data onto a lower-dimensional dense feature vector
• For example, with random kernel features
• For example, with the first layer of  a deep neural network
• For example, word2vec



Johnson–Lindenstrauss Transform

• One popular general embedding you’ve already seen

• Recall: given 0 < ε < 1, m points in RD, there is a matrix A such that

• We can use this to project sparse vectors onto a smaller dense space
• Then use fast dense arithmetic

(1� ✏)kx� yk2  kAx�Ayk2  (1 + ✏)kx� yk2
where A 2 Rd⇥D and d ⇡ 8✏�2 log(m)



Sparsity on Hardware

• The CPU usually has the most to gain from going sparse
• Because it has large caches that support random access

• But GPUs can also benefit from sparse computation
• For example, NVIDIA has a cuSPARSE sparse matrix library

• If  sparsity pattern is predictable, we can design specialized hardware
• But I have not seen this used in production systems yet



More Complex Questions
Sparsity: Storage Matters — Episode 2
• Attack of  the Clones! 

• Should we store multiple copies of  our sparse thing in different formats?

• What precision to use for the indices?

• Should we use blocking?

• Should we use heterogeneous formats with dense sub-blocks?

• These questions can affect performance by orders of  magnitude!



Questions?



Structured Matrices
A whiteboard talk


