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Feedback survey results

• Programming assignments
• Many people expressed interest in having these

• Positive comments about the breakout discussions and activities
• More time for discussion



The course so far

• We’ve talked about optimization algorithms
• And ways to make them converge in fewer iterations

• We’ve talked about parallelism and memory bandwidth
• And how to take advantage of  these to increase throughput

• We’ve talked about hardware for machine learning

• But how do we bring it all together?



Imagine designing an ML system from scratch

• It’s easy to start with basic SGD in C++
• Implement objective function, gradient function, then make a loop

• But there’s so much more to be done with our C++ program
• Need to manually code a step size scheme
• Need to modify code to add mini-batching
• Need to add new code to use SVRG and momentum
• Need to completely rewrite code to run in parallel or with low-precision
• Impossible to get it to run on a GPU or on an ASIC
• And at each step we have to debug and validate the program

• There’s got to be a better way!



The solution: machine learning frameworks

• Goal: make ML easier
• From a software engineering perspective
• Make the computations more reliable, debuggable, and robust

• Goal: make ML scalable
• To large datasets running on distributed heterogeneous hardware

• Goal: make ML accessible
• So that even people who aren’t ML systems experts can get good performance



ML frameworks come in a few flavors

• General machine learning frameworks
• Goal: make a wide range of  ML workloads and applications easy for users

• General big data processing frameworks
• Focus: computing large-scale parallel operations quickly
• Typically has machine learning as a major, but not the only, application

• Deep learning frameworks
• Focus: fast scalable backpropagation and inference
• Although typically supports other applications as well



How can we evaluate an ML framework?

• How popular is it?
• Use drives use — ML frameworks have a snowball effect
• Popular frameworks attract more development and eventually more features

• Who is behind it?
• Major companies ensure long-term support

• What are its features?
• Often the least important consideration — unfortunately



Common Features of  Machine 
Learning Frameworks



What do ML frameworks support?

• Basic tensor operations
• Provides the low-level math behind all the algorithms

• Automatic differentiation
• Used to make it easy to run backprop on any model

• Simple-to-use composable implementations of  systems techniques
• Like minibatching, SVRG, Adam, etc.
• Includes automatic hyperparameter optimization



Tensors

• CS way to think about it: a tensor is a multidimensional array

• Math way to think about it: a tensor is a multilinear map

• Here the number n is called the order of  the tensor
• For example, a matrix is just a 2nd-order tensor

T (x1, x2, . . . , xn) is linear in each xi, with other inputs fixed.

T : Rd1 ⇥ Rd2 ⇥ · · ·⇥ Rdn ! R , T 2 Rd1⇥d2⇥···⇥dn



Examples of  Tensors in Machine Learning

• The CIFAR10 dataset consists of  60000 32x32 color images
• We can write the training set as a tensor

• Gradients for deep learning can also be tensors
• Example: fully-connected layer with 100 input and 100 output neurons, and mini-

batch size b=32

TCIFAR10 2 R32⇥32⇥3⇥60000

G 2 R100⇥100⇥32



Common Operations on Tensors

• Elementwise operations — looks like vector sum
• Example: Hadamard product

• Broadcast operations — expand along one or more dimensions
• Example:                                         , then with broadcasting 

• Extreme version of  this is the tensor product

• Matrix-multiply-like operations — sum or reduce along a dimension
• Also called tensor contraction

(A �B)i1,i2,...,in = Ai1,i2,...,inBi1,i2,...,in

A 2 R11⇥1, B 2 R11⇥5

(A+B)i,j = Ai,1 +Bi,j



Broadcasting makes ML easy to write

• Here’s how easy it is to write the loss and gradient for logistic regression
• Doesn’t even need to include a for-loop
• This code is in Julia but it would be similar in other languages



Tensors: a systems perspective

• Loads of  data parallelism
• Tensors are in some sense the structural embodiment of  data parallelism
• Multiple dimensions à not always obvious which one best to parallelize over

• Predictable linear memory access patterns
• Great for locality

• Many different ways to organize the computation
• Creates opportunities for frameworks to automatically optimize



Automatic Differentiation: Motivation

• One interesting class of  bug
• Imagine you write up an SGD algorithm with some objective and some gradient
• You hand-code the computation of  the objective and gradient
• What happens when you differentiate incorrectly?

• This bug is more common than you’d think
• Almost everybody will encounter it eventually if  they hand-write objectives
• And it’s really difficult and annoying to debug as models become complex

• The solution: generate the gradient automatically from the objective!



Many ways to do differentiation

• Symbolic differentiation
• Represent the whole computation symbolically, then differentiate symbolically
• Can be costly to compute and requires symbolization of  code

• Numerical differentiation
• Approximate the derivative by using something like
• Can introduce round-off  errors that compound over time

• Automatic differentiation
• Apply chain rule directly to fundamental operations in program

f 0(x) ⇡ f(x+ �)� f(x� �)

2�



Automatic differentiation

• Couple of  ways to do it, but most common is backpropagation

• Does a forward pass, and then a backward pass to compute the gradient

• Key result: automatic differentiation can compute gradients
• For any function that has differentiable components
• To arbitrary precision
• Using a small constant factor additional compute compared with the cost to 

compute the objective



General Machine Learning 
Frameworks



• scikit-learn
• A broad, full-featured toolbox of  machine learning and data analysis tools
• In Python
• Features support for classification, regression, clustering, dimensionality 

reduction: including SVM, logistic regression, k-Means, PCA



and

• NumPy
• Adds large multi-dimensional array and matrix types (tensors) to python
• Supports basic numerical operations on tensors, on the CPU

• SciPy
• Builds on NumPy and adds tools for scientific computing
• Supports optimization, data structures, statistics, symbolic computing, etc.
• Also has an interactive interface (Jupyter) and a neat plotting tool (matplotlib)

• Great ecosystem for prototyping systems



Theano

• Machine learning library for python
• Created by the University of  Montreal

• Supports tight integration with NumPy

• But also supports CPU and GPU integration
• Making it very fast for a lot of  applications

• Development has ceased because of  competition from other libraries



Julia and MATLAB

• Julia
• Relatively new language (6 years old) with growing community
• Natively supports numerical computing and all the tensor ops
• Syntax is nicer than Python, and it’s often faster
• But less support from the community and less library support

• MATLAB
• The decades-old standard for numerical computing
• Supports tensor computation, and many people use it for ML
• But has less attention from the community because it’s proprietary



Even lower-level: BLAS and LAPACK

• All these frameworks run on to of  basic linear algebra operations

• BLAS: Basic Linear Algebra Subroutines
• Also has support on GPUs with NVIDIA cuBLAS

• LAPACK: Linear Algebra PACKage

• If  you’re implementing from scratch, you still want to use these!



General Big Data Processing 
Frameworks



The original: MapReduce/Hadoop

• Invented by Google to handle distributed processing

• People started to use it for distributed machine learning
• And people still use it today

• But it’s mostly been supplanted by other libraries
• And for good reason
• Hadoop does a lot of  disk writes in order to be robust against failure of  

individual machines — not necessary for machine learning applications



Apache Spark

• Open-source cluster computing framework
• Built in Scala, and can also embed in Python

• Developed by Berkeley AMP lab
• Now spun off  into a company: DataBricks

• The original pitch: 100x faster than Hadoop/MapReduce

• Architecture based on resilient distributed datasets (RDDs)
• Essentially a distributed fault-tolerant data-parallel array



Spark MLLib

• Scalable machine learning library built on top of  Spark

• Supports most of  the same algorithms scikit-learn supports
• Classification, regression, decision trees, clustering, topic modeling
• Not primarily a deep learning library

• Major benefit: interaction with other processing in Spark
• SparkSQL to handle database-like computation
• GraphX to handle graph-like computation



Apache Mahout

• Backend-independent programming environment for machine learning
• Can support Spark as a backend
• But also supports basic MapReduce/Hadoop

• Focuses mostly on collaborative filtering, clustering, and classification
• Similarly to MLLib and scikit-learn

• Also not very deep learning focused



Many more here

• Lots of  very good frameworks for large-scale parallel 
programming don’t end up becoming popular

• Takeaway: important to release code people can use easily
• And capture a group of  users who can then help develop the 

framework



Deep Learning Frameworks



Caffe

• Deep learning framework
• Developed by Berkeley AI research

• Declarative expressions for describing network architecture

• Fast — runs on CPUs and GPUs out of  the box
• And supports a lot of  optimization techniques

• Huge community of  users both in academia and industry



Caffe code example



TensorFlow

• End-to-end deep learning system
• Developed by Google Brain

• API primarily in Python
• With support for other languages

• Architecture: build up a computation graph in Python
• Then the framework schedules it automatically on the available resources
• Although recently TensorFlow has announced an eager version

• Super-popular, still the de facto standard for ML



TensorFlow code example



• Python package that focuses on
• Tensor computation (like numpy) with strong GPU acceleration
• Deep Neural Networks built on a tape-based autograd system

• Eager computation out-of-the-box

• Uses a technique called reverse-mode auto-differentiation
• Allows users to change network behavior arbitrarily with zero lag or overhead
• Fastest implementation of  this method

• PyTorch is gaining popularity— may overtake TensorFlow, but hasn’t yet



PyTorch example



• Deep learning library from Apache.

• Scalable C++ backend
• Support for many frontend languages, including Python, Scala, C++, R, Perl…

• Focus on scalability to multiple GPUs
• Sometimes performs better than competing approaches.



MXNet Example

(from MXNet MNIST tutorial)



…and many other frameworks for ML

• Theano

• ONNX

• New frameworks will continue to be developed!



Conclusion

• Lots of  ML frameworks

• The popular ones change quickly over time
• But which one is popular matters

• It’s becoming easier to do ML every year

• QUESTIONS?


