
Inference, Low-Cost Models,
and Compression

CS6787 Lecture 11 — Fall 2018

Review: Inference

• Suppose that our training loss function looks like

• Inference is the problem of computing the prediction

f(w) =
1

N

nX

i=1

l(ŷ(w;xi), yi)

ŷ(w;xi)

Why should we care about inference?

• Train once, infer many times
• Many production machine learning systems just do inference

• Often want to run inference on low-power edge devices
• Such as cell phones, security cameras
• Limited memory on these devices to store models

• Need to get responses to users quickly
• On the web, users won’t wait more than a second

Inference on neural networks

• Just need to run the forward pass of the network.
• A bunch of matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not need to keep the
activations around for later processing.

• This makes inference a much simpler task than learning.
• Although it can still be costly — it’s a lot of linear algebra to do.

Metrics for Inference

• Important metric: throughput
• How many examples can we classify in some amount of time

• Important metric: latency
• How long does it take to get a prediction for a single example

• Important metric: model size
• How much memory do we need to store/transmit the model for prediction

• Important metric: energy use
• How much energy do we use to produce each prediction

• What are examples where we might care about each metric?

Improving the performance of
inference

Altering the batch size

• Just like with learning, we can make predictions in batches

• Increasing the batch size helps improve parallelism
• Provides more work to parallelize and an additional dimension for parallelization
• This improves throughput

• But increasing the batch size can make us do more work before we can
return an answer for any individual example
• Can negatively affect latency

Demo

Compression

• Find an easier-to-compute network with similar accuracy
• Or find a network with smaller model size, depending on the goal

• Many techniques for doing this

• Usually involve some sort of fine-tuning
• Apply a lossy compression operation, then retrain the model to improve accuracy

• The subject of this week’s paper

Low-precision arithmetic for inference

• Very simple technique: just use low-precision arithmetic in inference

• Can make any signals in the model low-precision

• Simple heuristic for compression: keep lowering the precision of
signals until the accuracy decreases
• Can often get down below 16 bit numbers with this method alone

• Binarization/ternarization is low-precision arithmetic in the extreme

Pruning

• Remove activations that are usually zero
• Or that don’t seem to be contributing much to the model

• Effectively creates a smaller model
• This makes it easy to retrain, since we’re just training a smaller network

• There’s always the question of whether training a smaller model in the
first place would have been as good or better.
• But usually pruning is observed to produce benefits.

Knowledge distillation

• Idea: take a large/complex model and train a smaller network to
match its output
• Often used for distilling ensemble models into a single network
• E.g. Hinton et. al. “Distilling the Knowledge in a Neural Network.”

• Can also improve the accuracy in some cases.

Efficient architectures

• Some neural network architectures are designed to be efficient at
inference time
• Examples: MobileNet, ShuffleNet, CirCNN

• These networks are often based on sparsely connected neurons
• This limits the number of weights which makes models smaller and easier to run

inference on

• To be efficient, we can just train one of these networks in the first
place for our application.

Re-use of computation

• For video and time-series data, there is a lot of redundant information
from one frame to the next.

• We can try to re-use some of the computation from previous frames.

• This is less popular than some of the other approaches here, because it is
not really general.

The last resort for speeding up DNN inference

• Train another, faster type of model that is not a deep neural network
• For some real-time applications, you can’t always use a DNN

• If you can get away with a linear model, that’s almost always much
faster.

• Also, decision trees tend to be quite fast for inference.

Where do we run inference?

Inference in the cloud

•Most inference today is run on cloud platforms

• The cloud supports large amounts of compute
• And makes it easy to access it and make it reliable

• This is a good place to put AI that needs to think about data

• For interactive models, latency is critical

Inference on edge devices

• Inference can run on your laptop or smartphone
• Here, the size of the model becomes more of an issue
• Limited smartphone memory

• This is good for user privacy and security
• But not as good for companies that want to keep their models private

• Also can be used to deploy personalized models

Inference on sensors

• Sometimes we want inference right at the source
• On the sensor where data is collected

• Example: a surveillance camera taking video
• Don’t want to stream the video to the cloud, especially if most of it is

not interesting.

• Energy use is very important here.

Questions?

• Upcoming things
• Paper Review #8a or #8b — due today
• Paper Presentation #9a and #9b on Wednesday

Hardware for Machine
Learning

CS6787 Lecture 11 — Fall 2018

Recap: modern ML hardware

• Lots of different types
• CPUs
•GPUs
• FPGAs
• Specialized accelerators

• Right now, GPUs are dominant…we’ll get to why later

What does a modern machine learning pipeline
look like?
• Not just a neural network:

DNN

What does a modern machine learning pipeline
look like?
• Many different components

DNN
training

Preprocessing
of the

training set

DNN
inference

New examples to be
processed

Where can hardware help?

• Everywhere!

• There’s interest in using hardware everywhere in the pipeline
• both adapting existing hardware architectures, and
• developing new ones

• What improvements can we get?
• Lower latency inference
• Higher throughput training
• Lower power cost

How can hardware help? Three ways

• Speed up the basic building blocks of machine learning computation
• Major building block: matrix-matrix multiply
• Another major building block: convolution

• Add data/memory paths specialized to machine learning workloads
• Example: having a local cache to store network weights

• Create application-specific functional units
• Not for general ML, but for a specific domain or application

Why are GPUs so popular for
machine learning?

Why are GPUs so popular for
training deep neural networks?

GPU vs CPU

• CPU is a general purpose processor
• Modern CPUs spend most of their area on deep caches
• This makes the CPU a great choice for applications with random or non-uniform

memory accesses

• GPU is optimized for
• more compute intensive workloads
• streaming memory models

Machine learning
applications look
more like this

FLOPS: GPU vs CPU

• FLOPS: floating point operations per second

From Karl Rupp’s blog
https://www.karlrupp.net/2016/08
/flops-per-cycle-for-cpus-gpus-and-
xeon-phis/

This was the best diagram I could
find that shows trends over time.

GPU FLOPS
consistently exceed
CPU FLOPS

Intel Xeon Phi chips are compute-
heavy manycore processors that
compete with GPUs

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/

Memory bandwidth: CPU vs GPU

• GPUs have higher memory bandwidths than CPUs
• E.g. new NVIDIA Tesla V100 has a claimed 900 GB/s memory bandwidth
• Wheras Intel Xeon E7 has only about 100 GB/s memory bandwidth

• But, this comparison is unfair!
• GPU memory bandwidth is the bandwidth to GPU memory
• E.g. on a PCIE2, bandwidth is only 32 GB/s for a GPU

What limits deep learning?

• Is it compute bound or memory bound?

• Ideally: it’s compute bound
• Why? Matrix-matrix multiply takes O(n2) memory but O(n3) compute

• Sometimes it is memory/communication bound
• Especially when we are running at large scale on a cluster

Challengers to the GPU

• More compute-intensive CPUs
• Like Intel’s Phi line — promise same level of compute performance and better

handling of sparsity

• Low-power devices
• Like mobile-device-targeted chips
• Configurable hardware like FPGAs and CGRAs

• Accelerators that speed up matrix-matrix multiply
• Like Google’s TPU

Will all computation become
dense matrix-matrix multiply?

Deep learning and matrix-matrix multiply

• Traditionally, the most costly operation for deep learning for both
training and inference is dense matrix-matrix multiply

• Matrix-matrix multiply at O(n3) scales worse than other operations
• So should expect it to become even more of a bottleneck as problems scale

• Deep learning is still exploding and capturing more compute cycles
• Motivates the question: will most computation in the future become dense

matrix-matrix multiply?

What if dense matrix multiply takes over?

• Great opportunities for new highly specialized hardware
• The TPU is already an example of this
• It’s a glorified matrix-matrix multiply engine

• Significant power savings from specialized hardware
• But not as much as if we could use something like sparsity

• It might put us all out of work
• Who cares about researching algorithms when there’s only one algorithm

anyone cares about?

What if matrix multiply doesn’t take over?

• Great opportunities for designing new heterogeneous, application-
specific hardware
• We might want one chip for SVRG, one chip for low-precision

• Interesting systems/framework opportunities to give users suggestions
for which chips to use
• Or even to automatically dispatch work within a heterogeneous datacenter

• Community might fragment
• Into smaller subgroups working on particular problems

The truth is somewhere in the middle

• We’ll probably see both
• a lot of dense matrix-matrix multiply compute
• a lot of opportunities for faster more specialized compute

• New models are being developed every day
• And we shouldn’t read too much into the current trends

• But this means we get the best of both worlds
• We can do research on either side and still have impact

Questions?

• Upcoming things
• Paper Review #8a or #8b — due today
• Paper Presentation #9a and #9b on Wednesday

