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Review: Inference

• Suppose that our training loss function looks like

• Inference is the problem of  computing the prediction
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Why should we care about inference?

• Train once, infer many times
• Many production machine learning systems just do inference

• Often want to run inference on low-power edge devices
• Such as cell phones, security cameras
• Limited memory on these devices to store models

• Need to get responses to users quickly
• On the web, users won’t wait more than a second



Inference on neural networks

• Just need to run the forward pass of  the network.
• A bunch of  matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not need to keep the 
activations around for later processing.

• This makes inference a much simpler task than learning.
• Although it can still be costly — it’s a lot of  linear algebra to do.



Metrics for Inference

• Important metric: throughput
• How many examples can we classify in some amount of  time

• Important metric: latency
• How long does it take to get a prediction for a single example

• Important metric: model size
• How much memory do we need to store/transmit the model for prediction

• Important metric: energy use
• How much energy do we use to produce each prediction

• What are examples where we might care about each metric?



Improving the performance of  
inference



Altering the batch size

• Just like with learning, we can make predictions in batches

• Increasing the batch size helps improve parallelism
• Provides more work to parallelize and an additional dimension for parallelization
• This improves throughput

• But increasing the batch size can make us do more work before we can 
return an answer for any individual example
• Can negatively affect latency



Demo



Compression

• Find an easier-to-compute network with similar accuracy
• Or find a network with smaller model size, depending on the goal

• Many techniques for doing this

• Usually involve some sort of  fine-tuning
• Apply a lossy compression operation, then retrain the model to improve accuracy

• The subject of  this week’s paper



Low-precision arithmetic for inference

• Very simple technique: just use low-precision arithmetic in inference

• Can make any signals in the model low-precision

• Simple heuristic for compression: keep lowering the precision of  
signals until the accuracy decreases
• Can often get down below 16 bit numbers with this method alone

• Binarization/ternarization is low-precision arithmetic in the extreme



Pruning

• Remove activations that are usually zero
• Or that don’t seem to be contributing much to the model

• Effectively creates a smaller model
• This makes it easy to retrain, since we’re just training a smaller network

• There’s always the question of  whether training a smaller model in the 
first place would have been as good or better.
• But usually pruning is observed to produce benefits.



Knowledge distillation

• Idea: take a large/complex model and train a smaller network to 
match its output
• Often used for distilling ensemble models into a single network
• E.g. Hinton et. al. “Distilling the Knowledge in a Neural Network.”

• Can also improve the accuracy in some cases.



Efficient architectures

• Some neural network architectures are designed to be efficient at 
inference time
• Examples: MobileNet, ShuffleNet, CirCNN

• These networks are often based on sparsely connected neurons
• This limits the number of  weights which makes models smaller and easier to run 

inference on

• To be efficient, we can just train one of  these networks in the first 
place for our application.



Re-use of  computation

• For video and time-series data, there is a lot of  redundant information 
from one frame to the next.

• We can try to re-use some of  the computation from previous frames.

• This is less popular than some of  the other approaches here, because it is 
not really general.



The last resort for speeding up DNN inference

• Train another, faster type of  model that is not a deep neural network
• For some real-time applications, you can’t always use a DNN

• If  you can get away with a linear model, that’s almost always much 
faster.

• Also, decision trees tend to be quite fast for inference.



Where do we run inference?



Inference in the cloud

•Most inference today is run on cloud platforms

• The cloud supports large amounts of  compute
• And makes it easy to access it and make it reliable

• This is a good place to put AI that needs to think about data

• For interactive models, latency is critical



Inference on edge devices

• Inference can run on your laptop or smartphone
• Here, the size of  the model becomes more of  an issue
• Limited smartphone memory

• This is good for user privacy and security
• But not as good for companies that want to keep their models private

• Also can be used to deploy personalized models



Inference on sensors

• Sometimes we want inference right at the source
• On the sensor where data is collected

• Example: a surveillance camera taking video
• Don’t want to stream the video to the cloud, especially if  most of  it is 

not interesting.

• Energy use is very important here.



Questions?

• Upcoming things
• Paper Review #8a or #8b — due today
• Paper Presentation #9a and #9b on Wednesday



Hardware for Machine 
Learning
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Recap: modern ML hardware

• Lots of  different types
• CPUs
•GPUs
• FPGAs
• Specialized accelerators

• Right now, GPUs are dominant…we’ll get to why later



What does a modern machine learning pipeline 
look like?
• Not just a neural network:

DNN



What does a modern machine learning pipeline 
look like?
• Many different components

DNN
training

Preprocessing 
of  the 

training set

DNN
inference

New examples to be 
processed



Where can hardware help?

• Everywhere!

• There’s interest in using hardware everywhere in the pipeline
• both adapting existing hardware architectures, and
• developing new ones

• What improvements can we get?
• Lower latency inference
• Higher throughput training
• Lower power cost



How can hardware help? Three ways

• Speed up the basic building blocks of  machine learning computation
• Major building block: matrix-matrix multiply
• Another major building block: convolution

• Add data/memory paths specialized to machine learning workloads
• Example: having a local cache to store network weights

• Create application-specific functional units
• Not for general ML, but for a specific domain or application



Why are GPUs so popular for 
machine learning?



Why are GPUs so popular for 
training deep neural networks?



GPU vs CPU

• CPU is a general purpose processor
• Modern CPUs spend most of  their area on deep caches
• This makes the CPU a great choice for applications with random or non-uniform 

memory accesses

• GPU is optimized for
• more compute intensive workloads
• streaming memory models

Machine learning 
applications look 
more like this



FLOPS: GPU vs CPU

• FLOPS: floating point operations per second

From Karl Rupp’s blog 
https://www.karlrupp.net/2016/08
/flops-per-cycle-for-cpus-gpus-and-
xeon-phis/

This was the best diagram I could 
find that shows trends over time.

GPU FLOPS 
consistently exceed 
CPU FLOPS

Intel Xeon Phi chips are compute-
heavy manycore processors that 
compete with GPUs

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/


Memory bandwidth: CPU vs GPU

• GPUs have higher memory bandwidths than CPUs
• E.g. new NVIDIA Tesla V100 has a claimed 900 GB/s memory bandwidth
• Wheras Intel Xeon E7 has only about 100 GB/s memory bandwidth

• But, this comparison is unfair!
• GPU memory bandwidth is the bandwidth to GPU memory
• E.g. on a PCIE2, bandwidth is only 32 GB/s for a GPU



What limits deep learning?

• Is it compute bound or memory bound?

• Ideally: it’s compute bound
• Why? Matrix-matrix multiply takes O(n2) memory but O(n3) compute

• Sometimes it is memory/communication bound
• Especially when we are running at large scale on a cluster



Challengers to the GPU

• More compute-intensive CPUs
• Like Intel’s Phi line — promise same level of  compute performance and better 

handling of  sparsity

• Low-power devices
• Like mobile-device-targeted chips
• Configurable hardware like FPGAs and CGRAs

• Accelerators that speed up matrix-matrix multiply
• Like Google’s TPU



Will all computation become 
dense matrix-matrix multiply?



Deep learning and matrix-matrix multiply

• Traditionally, the most costly operation for deep learning for both 
training and inference is dense matrix-matrix multiply

• Matrix-matrix multiply at O(n3) scales worse than other operations
• So should expect it to become even more of  a bottleneck as problems scale

• Deep learning is still exploding and capturing more compute cycles
• Motivates the question: will most computation in the future become dense 

matrix-matrix multiply?



What if  dense matrix multiply takes over?

• Great opportunities for new highly specialized hardware
• The TPU is already an example of  this
• It’s a glorified matrix-matrix multiply engine

• Significant power savings from specialized hardware
• But not as much as if  we could use something like sparsity

• It might put us all out of  work
• Who cares about researching algorithms when there’s only one algorithm 

anyone cares about?



What if  matrix multiply doesn’t take over?

• Great opportunities for designing new heterogeneous, application-
specific hardware
• We might want one chip for SVRG, one chip for low-precision

• Interesting systems/framework opportunities to give users suggestions 
for which chips to use
• Or even to automatically dispatch work within a heterogeneous datacenter

• Community might fragment
• Into smaller subgroups working on particular problems



The truth is somewhere in the middle

• We’ll probably see both
• a lot of  dense matrix-matrix multiply compute
• a lot of  opportunities for faster more specialized compute

• New models are being developed every day
• And we shouldn’t read too much into the current trends

• But this means we get the best of  both worlds
• We can do research on either side and still have impact



Questions?

• Upcoming things
• Paper Review #8a or #8b — due today
• Paper Presentation #9a and #9b on Wednesday


