CS6787: Advanced Machine
Learning Systems

CS6787 Lecture 1 — Fall 2018

this course

What’s missing in the basic stutf?

Efficiency!

Motivation:

Machine learning applications
involve large amounts of data

More data =2 Better services

Better systems =2 More data

How do practitioners make
their systems better?

How do we improve our systems?
Course outline

* The use methods for accelerating convergence P 1
* Make ML algorithms converge in fewer iterations art

* They use metaparameter optimization P 0
* How to set parameters of these techniques automatically art

* They use techniques for improving runtime
* Making each iteration of the algorithm run faster Par t 3

* They use machine learning hardware and frameworks Part 4

* Using specialized tools to get more performance from less effort

Course Format

One half

Traditional lectures

Broad description of techniques

One half

Important papets

Presentations by you
In-class discussions

Reviews of each paper

Prerequisites

* Basic ML knowledge (CS 4780)

* Math/statistics knowledge
* At the level of the entrance exam for CS 4780

Grading

* Paper presentations
* Discussion participation
* Paper reviews

* Final project

Paper presentations

* Presenting in groups of two-to-three
* Papers listed on the website
* 25-minute presentation slot for each paper

* Signups on Wednesday

Discusston and Paper Reviews

* Hach paper presentation will be followed by questions and breakout
discussion

* Please read at least one of the papers before coming to class
* And at least skim the other paper, so you know what to expect

* For each class period, submit a review of one of the two papers
* Detailed instructions are on the course webpage

Final Project

* Open-ended: work on what you think is interesting]
* Groups of up to three

* Your proposed project must include:

* The implementation of a machine learning system for some task
* Exploring one or more of the techniques discussed in the course
* To empirically evaluate performance and compare with a baseline.

Late Policy

* This is a graduate level course
* Two free late days for each of the paper reviews

* No late days on the final project
* To make things easy on the graders

Questions?

Stochastic Gradient Descent:

The Workhorse of Machine
Learning

CS6787 Lecture 1 — Fall 2018

Optimization

* Much of machine learning can be written as an optimization problem

N /I
: : trainin
o L0 2 /(@3
T examples
1=

* Example loss functions: logistic regression, linear regression, principle
component analysis, neural network loss, empirical risk minimization

Types ot Optimization

* Convex optimization
* The easy case

* Includes logistic regression, linear regression, SVM

* Non-convex optimization |
. Build intuition about techniques from
* NP-hard in gener al the convex case where we can prove

* Includes deep learning things...

...and apply it to better understand
more complicated systems.

An Abridged Introduction to
Convex Functions

Convex Functions

Va € [0,1], f(az + (1 —a)y) < af(z) + (1 —a)f(y)

4.5
4
3.5
3
2.5
2
1.5
1
0.5

0
2.5 2 -1.5 -1 0.5 0 0.5 1 1.5 2 2.5

f(z) =2

Example: Quadratic

f(a) = 2°

(az + (1 — a)y)? = o?2* + 2a(1 — a)zy + (1 — a)?y?
=az’ + (1 — o)y — a(l — a)(z? + 22y + y°)
<az®+ (1 - a)y?

Example: Abs

+ (1 —a)y
+ (1 —a)ly

Example: Exponential

fla) = et

ccrt(l-—a)y _ yalr—y) _ oy Z ia”(az —)"

Properties of convex functions
* Any line segment we draw between two points lies above the curve

* Corollary: every local minimum is a global minimum
* Why?

* This is what makes convex optimization easy

* It suffices to find a local minimum, because we know it will be global

Properties of convex functions (continued)

* Non-negative combinations of convex functions are convex
h(z) =af(r)+ bg(x)
* Attine scalings of convex functions are convex

h(z) = f(Ax + b)

* Compositions of convex functions are NOT generally convex
* Neural nets are like this

Convex Functions: Alternative Definitions

e First-order condition

@ -y, Vf(z) = Vf(y)) =0

* Second-order condition
V2 f(x) =0

* This means that the matrix of second dertvatives is positive semidefinite

A»0& Ve, (x, Ax) > 0

Example: Quadratic

Example: Exponential

Example: Logistic LLoss

f(x) =log(l +¢€”)

Strongly Convex Functions

* Basically the eastest class of functions for optimization

e First-order condition:

(x —y,Vf(x) = VIy)>plz—yl

* Second-order condition:

VEf(x) = pl

* Equivalently:

h(z) = f(z) — &|lx||* is convex

Which of the functions we’ve looked at are
strongly convexr

Which of the functions we’ve looked at are
strongly convexr

Concave functions

* A function is concave if its negation is convex
f is convex < h(x) = —f(x) is concave

* Example: f(x) = log(z)

Why care about convex functions?

Convex Optimization

* (Goal 1s to minimize a convex function

4.5
3.5
2.5
1.5

0.5

2.5 2 -1.5 -1 0.5 0 0.5 1 1.5 2 2.5

Gradient Descent

r < x—aVf(r)

4.5
3.5
2.5
1.5

0.5

2.5 2 -1.5 -1 0.5 0 0.5 1

Gradient Descent Converges

* Iterative definition of gradient descent
L+l — Lt — OéVf(.ﬁEt)

* Assumptions/terminology:

Global optimum is x*

Bounded second derivative ul < V4 f(x) < LI

Gradient Descent Converges (continued)

Trp1 — & =ap — 2" —a(Vf(z) — V(7))
=z, — 2" — aVaf(z)(z — %)

= (I —aV7f(z))(xz: —z%).

* Taking the norm
|zi1 — 2% < [T — aV2f(z)
< maX(“ o O5:u|7

e — 2|
I —all) |z — 27|

Gradient Descent Converges (continued)

* So if weset (v = 2/(L—|—,u) then

L—p
. S < . S
o =" < 7= ar —a”|
* And recurstvely
L —pu g
. S < . *k
|z — 27| < (LJru) 2o — 2™

* Called convergence at a linear rate or sometimes (confusingly) exponential rate

The Problem with Gradient Descent
* [Large-scale optimization
1 N
h(z) = = S fla:y)
1=1

* Computing the gradient takes O(IN) time

Vhiz) = 5 3 Vf(ziv)

Gradient Descent with More Data

* Suppose we add more examples to our training set

* For simplicity, imagine we just add an extra copy of every training example

-] &
Vh(z) = TN ;Vf(a?;yi) - N ;Vf(CESyi)

* Same objective function

* But gradients take 2x the time to compute (unless we cheat)

* We want to scale up to huge datasets, so how can we do this?

Stochastic Gradient Descent

* Idea: rather than using the full gradient, just use one training example

* Super fast to compute

Tip1 = @ — aV f(x;9;,)

* In expectation, it’s just gradient descent:

This is an example

Elz,11] = E[z] — oaE[Vf(ze;y,)] selected uniformly at

random from the dataset.

1 N
= E 7] - QN ; V f(xe; i)

Stochastic Gradient Descent Convergence

* Can SGD converge using just one example to estimate the gradient?

ri1 —x =x —x —a(Vh(xy) — Vh(z™)) —a(Vf(xyy:,) — Vh(xy))
= (I —aV?h(z)) (xs —) — a (V f(zt;v5,) — V(1))

e How do we handle this extra noise term?

* Answer: bound it using the second moment!

Stochastic Gradient Descent Convergence

E ([— 2 [2] = E[(I - aV2h(20)) (@ — %) = a(Vf(@ei yie) — Vh(@))|?]
= B||(I - aV?h(z)) (@ — 2")?
= 20(Vf(2639i1) = V()T (I = aV?h(z)(2, — °)
) -
)

(z
+ 02|V f (4 Yi.t) — Vh(x)| }

= B[- aV?h(z)) (o — 22 + 021V £ (w13 i) — Vhiao)|P]
< (1 —au)?’E [||(£Ut —z")| } +a’M

assuming the upper bound E ||V f(z;y) — Vh(2)|?| < M

Stochastic Gradient Descent Convergence

* Already we can see that this converges to a fixed point of

aM
E K2 _
[th—l—l L H } 2,LL L O‘NZ

* This phenomenon is called converging to a noise ball
* Rather than approaching the optimum, SGD (with a constant step size)
converges to a region of low variance around the optimum
* This is okay for a lot of applications that only need approximate solutions

Demo

Stochastic gradient descent
is super populat.

What Does SGD Power?

* BEverything!

. o Py

‘ TensorFlow

’ (Q «dD DeepDive
W €

KeystonelMIL,

But how SGD 1s implemented in

practice 1s not exactly what I’ve
just shown you...

...and we’ll see how it’s different
in the upcoming lectures.

Questions?

* Upcoming things
* Paper presentation signups on Wednesday

