
CS6787: Advanced Machine
Learning Systems

CS6787 Lecture 1 — Fall 2018

Fundamentals of
Machine Learning

Machine Learning
in Practice?

this course

What’s missing in the basic stuff ?

Efficiency!

Motivation:

Machine learning applications
involve large amounts of data

More data à Better services

Better systems à More data

How do practitioners make
their systems better?

How do we improve our systems?

• The use methods for accelerating convergence
• Make ML algorithms converge in fewer iterations

• They use metaparameter optimization
• How to set parameters of these techniques automatically

• They use techniques for improving runtime
• Making each iteration of the algorithm run faster

• They use machine learning hardware and frameworks
• Using specialized tools to get more performance from less effort

Part 1

Part 2

Part 3

Part 4

Course outline

Course Format

One half

Traditional lectures
Broad description of techniques

One half

Important papers
Presentations by you
In-class discussions

Reviews of each paper

Prerequisites

•Basic ML knowledge (CS 4780)

•Math/statistics knowledge
•At the level of the entrance exam for CS 4780

Grading

• Paper presentations

•Discussion participation

• Paper reviews

• Final project

Paper presentations

• Presenting in groups of two-to-three

• Papers listed on the website

• 25-minute presentation slot for each paper

• Signups on Wednesday

Discussion and Paper Reviews

• Each paper presentation will be followed by questions and breakout
discussion

• Please read at least one of the papers before coming to class
• And at least skim the other paper, so you know what to expect

• For each class period, submit a review of one of the two papers
• Detailed instructions are on the course webpage

Final Project

•Open-ended: work on what you think is interesting!

•Groups of up to three

•Your proposed project must include:
• The implementation of a machine learning system for some task
• Exploring one or more of the techniques discussed in the course
• To empirically evaluate performance and compare with a baseline.

Late Policy

• This is a graduate level course

• Two free late days for each of the paper reviews

• No late days on the final project
• To make things easy on the graders

Questions?

Stochastic Gradient Descent:
The Workhorse of Machine

Learning

CS6787 Lecture 1 — Fall 2018

Optimization

• Much of machine learning can be written as an optimization problem

• Example loss functions: logistic regression, linear regression, principle
component analysis, neural network loss, empirical risk minimization

min
x

NX

i=1

f(x; yi)model

loss function

training
examples

Types of Optimization

•Convex optimization
• The easy case
• Includes logistic regression, linear regression, SVM

• Non-convex optimization
•NP-hard in general
• Includes deep learning

A good strategy:

Build intuition about techniques from
the convex case where we can prove

things…

…and apply it to better understand
more complicated systems.

An Abridged Introduction to
Convex Functions

Convex Functions

8↵ 2 [0, 1], f(↵x+ (1� ↵)y)  ↵f(x) + (1� ↵)f(y)

0
0.5
1
1 .5
2
2.5
3
3.5
4
4.5

-2.5 -2 -1 .5 -1 -0.5 0 0.5 1 1 .5 2 2.5

f(x) = x2

Example: Quadratic

f(x) = x2

(↵x+ (1� ↵)y)2 = ↵2x2 + 2↵(1� ↵)xy + (1� ↵)2y2

= ↵x2 + (1� ↵)y2 � ↵(1� ↵)(x2 + 2xy + y2)

 ↵x2 + (1� ↵)y2

Example: Abs

f(x) = |x|

|↵x+ (1� ↵)y|  |↵x|+ |(1� ↵)y|
= ↵|x|+ (1� ↵)|y|

Example: Exponential

f(x) = ex

e↵x+(1�↵)y = eye↵(x�y) = ey
1X

n=0

1

n!
↵n(x� y)n

 ey

1 + ↵

1X

n=1

1

n!
(x� y)n

!

= ey
�
(1� ↵) + ↵ex�y

�

= (1� ↵)ey + ↵ex

(if x > y)

Properties of convex functions

• Any line segment we draw between two points lies above the curve

• Corollary: every local minimum is a global minimum
• Why?

• This is what makes convex optimization easy
• It suffices to find a local minimum, because we know it will be global

Properties of convex functions (continued)

• Non-negative combinations of convex functions are convex

• Affine scalings of convex functions are convex

• Compositions of convex functions are NOT generally convex
• Neural nets are like this

h(x) = af(x) + bg(x)

h(x) = f(Ax+ b)

h(x) = f(g(x))

Convex Functions: Alternative Definitions

• First-order condition

• Second-order condition

• This means that the matrix of second derivatives is positive semidefinite

r2f(x) ⌫ 0

A ⌫ 0 , 8x, hx,Axi � 0

hx� y,rf(x)�rf(y)i � 0

Example: Quadratic

f(x) = x2

f 00(x) = 2 � 0

Example: Exponential

f(x) = ex

f 00(x) = ex � 0

Example: Logistic Loss

f(x) = log(1 + ex)

f 0(x) =
ex

1 + ex
=

1

1 + e�x

f 00(x) = � �e�x

(1 + e�x)2
=

1

(1 + ex)(1 + e�x)
� 0.

Strongly Convex Functions

• Basically the easiest class of functions for optimization
• First-order condition:

• Second-order condition:

• Equivalently:

hx� y,rf(x)�rf(y)i � µkx� yk2

r2f(x) ⌫ µI

h(x) = f(x)� µ
2 kxk

2 is convex

Which of the functions we’ve looked at are
strongly convex?

Which of the functions we’ve looked at are
strongly convex?

Concave functions

• A function is concave if its negation is convex

• Example:

f is convex , h(x) = �f(x) is concave

f(x) = log(x)

f 00(x) = � 1

x2
 0

Why care about convex functions?

Convex Optimization

• Goal is to minimize a convex function

0
0.5
1
1 .5
2
2.5
3
3.5
4
4.5

-2.5 -2 -1 .5 -1 -0.5 0 0.5 1 1 .5 2 2.5

Gradient Descent

0
0.5
1
1 .5
2
2.5
3
3.5
4
4.5

-2.5 -2 -1 .5 -1 -0.5 0 0.5 1 1 .5 2 2.5

x x� ↵rf(x)

Gradient Descent Converges

• Iterative definition of gradient descent

• Assumptions/terminology:

xt+1 = xt � ↵rf(xt)

Global optimum is x⇤

Bounded second derivative µI � r2f(x) � LI

Gradient Descent Converges (continued)

• Taking the norm

xt+1 � x⇤ = xt � x⇤ � ↵(rf(xt)�rf(x⇤))

= xt � x⇤ � ↵r2f(zt)(xt � x⇤)

= (I � ↵r2f(zt))(xt � x⇤).

kxt+1 � x⇤k 
��I � ↵r2f(zt)

�� kxt � x⇤k
 max (|1� ↵µ|, |1� ↵L|) kxt � x⇤k

Gradient Descent Converges (continued)

• So if we set then

• And recursively

• Called convergence at a linear rate or sometimes (confusingly) exponential rate

↵ = 2/(L+ µ)

kxt+1 � x⇤k  L� µ

L+ µ
kxt � x⇤k

kxT � x⇤k 
✓
L� µ

L+ µ

◆T

kx0 � x⇤k

The Problem with Gradient Descent

• Large-scale optimization

• Computing the gradient takes O(N) time

h(x) =
1

N

NX

i=1

f(x; yi)

rh(x) =
1

N

NX

i=1

rf(x; yi)

Gradient Descent with More Data

• Suppose we add more examples to our training set
• For simplicity, imagine we just add an extra copy of every training example

• Same objective function
• But gradients take 2x the time to compute (unless we cheat)

• We want to scale up to huge datasets, so how can we do this?

rh(x) =
1

2N

NX

i=1

rf(x; yi) +
1

2N

NX

i=1

rf(x; yi)

Stochastic Gradient Descent

• Idea: rather than using the full gradient, just use one training example
• Super fast to compute

• In expectation, it’s just gradient descent:
This is an example

selected uniformly at
random from the dataset.

xt+1 = xt � ↵rf(xt; yĩt)

E [xt+1] = E [xt]� ↵E [rf(xt; yit)]

= E [xt]� ↵
1

N

NX

i=1

rf(xt; yi)

Stochastic Gradient Descent Convergence

• Can SGD converge using just one example to estimate the gradient?

• How do we handle this extra noise term?

• Answer: bound it using the second moment!

xt+1 � x⇤ = xt � x⇤ � ↵ (rh(xt)�rh(x⇤))� ↵ (rf(xt; yit)�rh(xt))

=
�
I � ↵r2h(zt)

�
(xt � x⇤)� ↵ (rf(xt; yit)�rh(xt))

Stochastic Gradient Descent Convergence
E
⇥
kxt+1 � x⇤k2

⇤
= E

⇥
k(I � ↵r2h(zt))(xt � x⇤)� ↵(rf(xt; yi,t)�rh(xt))k2

⇤

= E
h
k(I � ↵r2h(zt))(xt � x⇤)k2

� 2↵(rf(xt; yi,t)�rh(xt))
T (I � ↵r2h(zt))(xt � x⇤)

+ ↵2krf(xt; yi,t)�rh(xt)k2
i

= E
h
k(I � ↵r2h(zt))(xt � x⇤)k2 + ↵2krf(xt; yi,t)�rh(xt)k2

i

 (1� ↵µ)2E
⇥
k(xt � x⇤)k2

⇤
+ ↵2M

assuming the upper bound E
⇥
krf(x; y)�rh(x)k2

⇤
 M

Stochastic Gradient Descent Convergence

• Already we can see that this converges to a fixed point of

• This phenomenon is called converging to a noise ball
• Rather than approaching the optimum, SGD (with a constant step size)

converges to a region of low variance around the optimum
• This is okay for a lot of applications that only need approximate solutions

E
⇥
kxt+1 � x⇤k2

⇤
=

↵M

2µ� ↵µ2

Demo

Stochastic gradient descent
is super popular.

What Does SGD Power?

• Everything!

But how SGD is implemented in
practice is not exactly what I’ve
just shown you…

…and we’ll see how it’s different
in the upcoming lectures.

Questions?

•Upcoming things
• Paper presentation signups on Wednesday

