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Warm-Up Assignment

e Submission
— Deadline today, Thursday 1/30, by 11:59pm

— Make sure to not include your name in PDF = double-
blind reviewing

* Reviewing
— Double-blind = academic integrity

* You do not know who you reviewed. Authors do not know who
reviewed them.

* Do not talk about who you reviewed.

* Assignments done at random. Let us know if you feel conflicted
with some assignment.

— Answer review questions

— Text should justify and your scores as convincingly as
possible.



Part-of-Speech Tagging

Predict sequence of POS tags for sequence of
words:

Ambiguity

— He will /V the car.

— When will the /NOUN end?

— | /V at CFCU.

— Go to the /NOUN!

Average of ~2 parts of speech for each word

20 — 400 different tags (i.e. word classes)



Predicting Sequences

e Bayes rule:
— Generative model
* Designh decisions:
— Representation

* Linear chain Hidden Markov Model

— Prediction (i.e. inference)
* Viterbi algorithm

— Learning
* Maximum likelihood



* Bayesrule: h(x) = argmax[P(X = x|Y = y)P(Y = y)]

Representation:
Hidden Markov Model

yeY

* Independence assumptions for compact representation
P(Y:(yl 1)_1_[P(Yl_ylyl 1_yl 1)

P(X = (! x)[Y = (! ¥1)) =

* Each sequence pair has X

probability:

PX=xY=y)=

— HP(XL — xi|yi — yl)
i=1
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Representation:
Hidden Markov Model

States:y € {s,,...,S}

— Special starting state s,

Outputs symbols: x € {0,,...,0.}

Transition probability P(Y! = s|Y!™1 = 5")

— Probability that one states succeeds another
Output/Emission probability P(Xi = o|Y! = S)
— Probability that word is generated in this state
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Learning:
Estimating HMM Probabilities

 Maximum Irlikelihood: Given (x4, y), ..., (cp 1), find

W = argmax H[P(Yi = v;, X; = x;|w)]

€ r
wew i=1

* Closed-form solutions

— Estimating transition probabilities
#of Times State a Follows State b

# of Times State b Occurs
— Estimating mission probabilities

P(Y/ =al|y/"t=b) =

#of Times Output o is Observed in State b
# of Times State b Occurs

P(X) =o|Y/ =b) =

* Need for smoothing the estimates (e.g. Laplace)



Prediction/Inference:
Viterbi Algorithm

Prediction: Find most likely state sequence
— Given x and fully specified HMM:

* transition probabilities
* emission probabilities

— Find the most likely state (i.e tag) sequence (y1, ..., y')

for a given sequence of observed output symbols (i.e.

words) (x1, ..., x!)

7 i
h(x) = argmax HP(Yi =y Yt =y p(XE = xt|Y! = yt)
vi,..ybHey =1
— Viterbi algorithm uses dynamic programming
e Construct trellis graph for HMM
* Shortest path in this graph is most likely state sequence

— Viterbi algorithm has runtime linear in length of
sequence



Viterbi Example

P(XI[Y) I bank |at CFCU | go to the
DET 0.01 0.01 0.01 0.01 0.01 0.01 0.94
PRP 0.94 0.01 0.01 0.01 0.01 0.01 0.01
\ 0.01 0.4 0.01 0.4 0.16 0.01 0.01
PREP 0.01 0.01 0.48 0.01 0.01 0.47 0.01
\/ 0.01 0.4 0.01 0.01 0.55 0.01 0.01

P(Y|Y") |DET |PRP |N PREP |V

START 0.3 0.3 0.1 0.1 0.2

DET 001 (001 |09 (0.01 |0.01

PRP 001 (001 |0.01 (0.2 0.77

\ 0.01 |0.2 0.3 0.3 0.19

PREP 0.3 0.2 0.3 0.19 |0.01

\/ 0.2 0.19 |0.3 0.3 0.01




Directed Graphical Models

* Representation of joint distribution
— Exploit conditional independence between random

variables Y| Det—N — V — Det — N
 Example I | |
— Joint distribution X| The bear chased the cat

P(P,T,1,X,S) = P(P)P(T)P(I|P, T)P(X|I)P(S|T)

from [Koller/etal/O?]



Undirected Graphical Models

 Markov Networks / Markov Random Fields
— More flexible representation of joint distribution

 Example
— Joint distribution Py (X, ..., X,) = ~P' (X, ., Xp)
- PI{I(Xl' '"an) — 7-[1[D1] X X T[m[Dm]

. !/
-/ = le,,,_,xn Py (X1, ..., Xp) from [Koller/etal/07 ]




