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Online Learning

• Learn “on the fly”

– Multi-armed Bandit Problem

• Broadly applicable

– Many systems interact with environment

– Can collect feedback, learn automatically

• How to analyze performance?

– Utilities of strategies chosen vs best in hindsight

– Also known as “regret”

…

Rate Pepsi

from 1-5

Users are thirsty

Users drink & rate

Goal: Maximize satisfaction

Absolute Explicit Feedback

Coke Avg:  2

Pepsi Avg: 2.75
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•Assumes users are able and willing 

to provide explicit feedback

…

Drink Coke
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•Assumes users are able and willing 

to provide explicit feedback
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Team-Game Interleaving
(Comparison Oracle for Search Applications)

1. Kernel Machines 
http://svm.first.gmd.de/

2. Support Vector Machine
http://jbolivar.freeservers.com/

3. An Introduction to Support Vector Machines
http://www.support-vector.net/

4. Archives of SUPPORT-VECTOR-MACHINES ...
http://www.jiscmail.ac.uk/lists/SUPPORT...

5. SVM-Light Support Vector Machine 
http://ais.gmd.de/~thorsten/svm light/

1. Kernel Machines 
http://svm.first.gmd.de/

2. SVM-Light Support Vector Machine 
http://ais.gmd.de/~thorsten/svm light/

3. Support Vector Machine and Kernel ... References
http://svm.research.bell-labs.com/SVMrefs.html

4. Lucent Technologies: SVM demo applet 
http://svm.research.bell-labs.com/SVT/SVMsvt.html

5. Royal Holloway Support Vector Machine 
http://svm.dcs.rhbnc.ac.uk

1. Kernel Machines T2
http://svm.first.gmd.de/

2. Support Vector Machine T1
http://jbolivar.freeservers.com/

3. SVM-Light Support Vector Machine T2
http://ais.gmd.de/~thorsten/svm light/

4. An Introduction to Support Vector Machines T1
http://www.support-vector.net/

5. Support Vector Machine and Kernel ... References T2
http://svm.research.bell-labs.com/SVMrefs.html

6. Archives of SUPPORT-VECTOR-MACHINES ... T1
http://www.jiscmail.ac.uk/lists/SUPPORT...

7. Lucent Technologies: SVM demo applet T2
http://svm.research.bell-labs.com/SVT/SVMsvt.html

f1(u,q)  r1 f2(u,q)  r2

Interleaving(r1,r2)

(u=thorsten, q=“svm”)

Interpretation: (r1 > r2) ↔ clicks(T1) > clicks(T2)

•Mix results of f1 and f2
•Relative feedback

•More reliable

[Radlinski, Kurup, Joachims, CIKM 2008]

Dueling Bandits Problem

• Given K bandits b1, …, bK

• Each iteration: compare (duel) two bandits

– E.g., interleaving two retrieval functions

• Comparison is noisy

– Each comparison result independent

– Comparison probabilities initially unknown

– Comparison probabilities fixed over time

• Total preference ordering, initially unknown

Dueling Bandits Problem

• Want to find best (or good) bandit

– Similar to finding the max w/ noisy comparisons

– Ours is a regret minimization setting

• Choose pair (bt, bt’) to minimize regret:

• (% users who prefer best bandit over chosen ones)
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•Example 1
•P(f* > f) = 0.9

•P(f* > f’) = 0.8

•Incurred Regret = 0.7

•Example 2 
•P(f* > f) = 0.7

•P(f* > f’) = 0.6

•Incurred Regret = 0.3

•Example 3
•P(f* > f) = 0.51

•P(f* > f) = 0.55

•Incurred Regret = 0.06

Assumptions

• P(bi > bj) = ½ + εij (distinguishability)

• Strong Stochastic Transitivity

– For three bandits bi > bj > bk :

– Monotonicity property

• Stochastic Triangle Inequality

– For three bandits bi > bj > bk :

– Diminishing returns property

• Satisfied by many standard models

– E.g., Logistic / Bradley-Terry 

jkijik , max

jkijik

Examples

A B C D

A 0 0.2 0.3 0.4

B -0.2 0 0.1 0.3

C -0.3 -0.1 0 0.1

D -0.4 -0.3 -0.1 0

A B C D

A 0 0.2 0.1 0.4

B -0.2 0 0.1 0.3

C -0.1 -0.1 0 0.1

D -0.4 -0.3 -0.1 0

A B C D

A 0 0.2 0.4 0.4

B -0.2 0 0.1 0.3

C -0.4 -0.1 0 0.1

D -0.4 -0.3 -0.1 0

A B C D

A 0 0.2 0.3 -0.1

B -0.2 0 0.1 0.3

C -0.3 -0.1 0 0.1

D 0.1 -0.3 -0.1 0

P(A > B) = ½ + εAB
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Explore then Exploit

• First explore

– Try to gather as much information as possible

– Accumulates regret based on which bandits we 

decide to compare

• Then exploit

– We have a (good) guess as to which bandit best

– Repeatedly compare that bandit with itself 

• (i.e., interleave that ranking with itself)
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Goal

• An explore algorithm that finds the best bandit 

with probability at least 1-1/T

• Let RE be the regret of running explore alg.
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Goal

• Explore algorithm accumulates RE = o(T)

• Average regret RE/T converges to 0 as T grows

• Goal:                                    ε = min (ε12, ε13, … ε1K) = ε12
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Mathematical Tools

• Union bound:

• Tail bound (Hoeffding):                        

• (probably the most useful slide in this lecture)
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(random variables between [0,1])

Comparing One Pair

• Comparisons are noisy

– P(bi > bj) = ½ + εij

– (assume εij > 0)

• How many comparisons are needed to confirm 

that εij > 0 with confidence 1-δ?

• Can use Hoeffding bound to show

– (with high probability)
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Naïve Approach

• In deterministic case, O(K) comparisons to find max

• Extend to noisy case:

– Repeatedly compare until confident one is better

• Problem: comparing two awful (but similar) bandits

– Waste comparisons to see which awful bandit is better

– Incur high regret for each comparison

– Also applies to elimination tournaments
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Interleaved Filter

• Choose candidate bandit at random

• Make noisy comparisons (Bernoulli trial)

against all other bandits simultaneously

– Maintain mean and confidence interval

for each pair of bandits being compared

• …until another bandit is better

– With confidence 1 – δ

• Repeat process with new candidate

– (Remove all empirically worse bandits)

• Continue until 1 candidate left

Regret Analysis

• Round: all the time steps for a particular 

candidate bandit

– Halts when better bandit found …

– … with 1- δ confidence

– Choose δ = 1/(TK2)

• Match: all the comparisons between two 

bandits in a round

– At most K matches in each round

– Candidate plays one match against each

remaining bandit

Per-Match Regret

• Number of comparisons in match bi vs bj :

– ε1i  > εij : round ends before concluding bi > bj

– ε1i  < εij : conclude bi > bj before round ends, remove bj

• Pay ε1i  + ε1j regret for each comparison

– By triangle inequality ε1i  + ε1j ≤ 2*max{ε1i , εij}

– Thus by stochastic transitivity accumulated regret is
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ε = min (ε12, ε13, … ε1K) = ε12

Analyzing IF1

• At most K matches per round

• Regret per match:

• How many rounds?

– Model the sequence of candidate bandits

as a random walk 

– Can prove using tail bounds (Chernoff)

that O(log K) rounds w.h.p.

• Total regret:
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Analyzing IF1

• How does IF1 avoid quadratic

dependence on 1/ε?

– Length of all matches in round bounded

by length of match with winner

– Does not waste time on “close” bandits

• But now has extra log K factor

– Because there are log K rounds

– Will fix this with IF2
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Removing Inferior Bandits

• At conclusion of each round

– Remove any empirically worse bandits

• Intuition:

– High confidence that winner is better

than incumbent candidate 

– Empirically worse bandits cannot be “much better” than

incumbent candidate

– Can show via Hoeffding bound that winner is also better than 

empirically worse bandits with high confidence

– Preserves 1-1/T confidence overall that we’ll find the best bandit
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Analyzing IF2

• “Pruning” at the end of each round

– Removes empirically inferior bandits

– Even if not 1- δ confident

– We still find best bandit w.p. 1-1/T

• How many pruned each round?

– In expectation at least ¼ of remainder

• O(K) matches played in total.

• Expected Regret: T
K
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Analyzing IF2

• O(K) total matches

• Each match incurs regret

– Depends on δ = K-2T-1

• Finds best bandit w.p. 1-1/T

• Expected regret:
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Limitations

• (Bandit  retrieval function)

• Ignores context

– Maybe one is better for some queries/users but not others

• Assumes quality of retrieval functions are static

– Maybe quality changes as users / documents change

• Inefficient for large K

– Assume additional structure on for retrieval functions?

• Assumes strong stochastic transitivity

– User preferences are probably not magnitude preserving


