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Users are thirsty

Users drink & rate
Goal: Maximize satisfaction

Coke Avg: 2
Pepsi Avg: 2.75
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Users are thirsty

Observe users drinking
Goal: Maximize satisfaction

Coke Wins: 3
Pepsi Wins: 1

Online Learning

* Learn “on the fly”
— Multi-armed Bandit Problem

» Broadly applicable
— Many systems interact with environment
— Can collect feedback, learn automatically

* How to analyze performance?

— Utilities of strategies chosen vs best in hindsight
— Also known as “regret”

Absolute Explicit Feedback

*Assumes users are calibrated on the
same scale (rating 1-5)

*Assumes users are able and willing
to provide explicit feedback

Users are thirsty
Users drink & rate
Goal: Maximize satisfaction

Coke Avg: 2
Pepsi Avg: 2.75

Relative Implicit Feedback
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Users are thirsty
Observe users drinking
Goal: Maximize satisfaction

Coke Wins: 3
Pepsi Wins: 1
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Team-Game Interleaving
(Comparison Oracle for Search Applications)

(u=thorsten, g="svm”)

fo(u,g) > 1,

I *Mix results of f; and f,
wan” nl eRelative feedback

S s *More reliable

Interpretation: (r, > r,) < clicks(T,) > clicks(T,)
[Radlinski, Kurup, Joachims, CIKM 2008]

Dueling Bandits Problem

* Wantto find best (or good) bandit
— Similar to finding the max w/ noisy comparisons
— Ours is a regret minimization setting

* Choose pair (b, b;’) to minimize regret:

.
Ry =Y P(b*>b)+P(b*>b") -1
t=1

* (% users who prefer best bandit over chosen ones)

Assumptions

* P(b; > by) = % + g; (distinguishability)

* Strong Stochastic Transitivity
— For three bandits b; > b; > by :

— Monotonicity property

* Stochastic Triangle Inequality
— For three bandits b, > b; > b : Ex S&j T &
— Diminishing returns property

- Satisfied by many standard models - .

— E.g., Logistic / Bradley-Terry

& = max i€k
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Dueling Bandits Problem

Given K bandits by, ..., bg
Each iteration: compare (duel) two bandits
— E.g., interleaving two retrieval functions

Comparison is noisy

— Each comparison result independent

— Comparison probabilities initially unknown
— Comparison probabilities fixed over time

Total preference ordering, initially unknown

.
Ry =Y P(b*>b,)+P(b*>b") -1

t=1

*Example 1
P(f*>f)=0.9
P(f*>f)=0.8
*Incurred Regret = 0.7

*Example 2
P> =07
P(f*>f)=0.6
Incurred Regret = 0.3

*Example 3
P(f*>f) =051
P(f*>f) =055
*Incurred Regret = 0.06

Examples

A B C D A B C D
A 0 02 03 04 A 0 02 03 -01
B -0.2 0 01 03 B -02 0 01 03
C -03 -01 0 0.1 CcC -03 -01 0 0.1
D -04 -03 -0.1 0 D 01 -03 -01 0

A B cC D A B cC D
A 0 02 04 04 A 0 02 01 04
B -0.2 0 01 03 B -0.2 0 01 03
C -04 -01 0 01 C -01 -01 0 0.1
D -04 -03 -01 0 D -04 -03 -0.1 0

P(A>B) =% +¢gyp
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Explore then Exploit Goal
 First explore » An explore algorithm that finds the best bandit
— Try to gather as much information as possible with probability at least 1-1/T
— Accumulates regret based on which bandits we T
decide to compare R; = Z P(b*>b)+P(b*>b')-1
t=1
* Then exploit
— We have a (good) guess as to which bandit best * Let Re be the regret of running explore alg.
— Repeatedly compare that bandit with itself B 1 1
- (i.e., interleave that ranking with itself) E I(T = (1—?]RE +?O(T)
RT=iP(b*>bl)+P(b*>b,')—l ER =0&._
t=1
Goal Mathematical Tools
(1 1 _ -
ERk = 1= Re +20(T) * Unionbound: P||JA |<Y P@
E RT :: of : I I

« Tail bound (Hoeffding): P,—E}, >nL <e?"
» Explore algorithm accumulates Rg = o(T) ( 9 ¢, I;” - 7

» Average regret Rg/T converges to 0 as T grows Xis--o X, (random variables between [0,1])

K S, =X, +..+ X,
* Goal: R.=0[—logT €= MiN (€19, 13, ... E1) = Exp
& « (probably the most useful slide in this lecture)

Comparing One Pair Naive Approach

» Comparisons are noisy + In deterministic case, O(K) comparisons to find max
~ P >b) =% +g

» Extend to noisy case:
— (assume g; > 0)

— Repeatedly compare until confident one is better

* How many comparisons are needed to confirm  Problem: comparing two awful (but similar) bandits
that g; > 0 with confidence 1-5? — Waste comparisons to see which awful bandit is better
— Incur high regret for each comparison
. 1 1 — Also applies to elimination tournaments
» Can use Hoeffding bound to show O[zlog]
— (with high probability) i 0 R - O(g log Tj




Interleaved Filter

» Choose candidate bandit at random

* Make noisy comparisons (Bernoulli trial)
against all other bandits simultaneously

— Maintain mean and confidence interval
for each pair of bandits being compared

« ...until another bandit is better
— With confidence 1 — 6

* Repeat process with new candidate
— (Remove all empirically worse bandits)

+ Continue until 1 candidate left

Per-Match Regret

* Number of comparisons in match b;vs b;: O(W‘l’?ﬂ)gT]
i &ij o

— & > g« round ends before concluding b;> by

— & <g;: conclude b;> b; before round ends, remove b;

+ Payeg,; + g, regret for each comparison
— By triangle inequality €; + €< 2*max{ey; , &}

— Thus by stochastic transitivity accumulated regret is

O[Wilﬁipgﬂ]s o&mgT]

€= MiN (€15, €13, - €1) = €12

Analyzing IF1

* How does IF1 avoid quadratic
dependence on 1/e? - B
— Length of all matches in round bounded 'YY ) . ‘
by length of match with winner
— Does not waste time on “close” bandits

» But now has extra log K factor
— Because there are log K rounds
— Will fix this with IF2

0(7K log K log Tj
£
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Regret Analysis

Round: all the time steps for a particular 0000
candidate bandit

— Halts when better bandit found ...
— ... with 1- d confidence

— Choose d = 1/(TK?)

Match: all the comparisons between two
bandits in a round V
— At most K matches in each round o0
— Candidate plays one match against each
remaining bandit

Analyzing IF1

At most K matches per round

Regret per match: O(i log T )
£

How many rounds? ) S
— Model the sequence of candidate bandits 6 0000
[ 1

as a random walk

— Can prove using tail bounds (Chernoff) ¥V Ty
that O(log K) rounds w.h.p. ®
Total regret: O(m logT j ‘
£ o200 00

Removing Inferior Bandits

At conclusion of each round 'SP
— Remove any empirically worse bandits . <> . .
¥V Ty
Intuition: . ] . .

— High confidence that winner is better
than incumbent candidate

— Empirically worse bandits cannot be “much better” than
incumbent candidate

— Can show via Hoeffding bound that winner is also better than
empirically worse bandits with high confidence

Preserves 1-1/T confidence overall that we'll find the best bandit



Analyzing IF2

“Pruning” at the end of each round o0 000e
— Removes empirically inferior bandits
— Evenif not 1- 8 confident
— We still find best bandit w.p. 1-1/T

How many pruned each round? .'/\ ’“./".
— In expectation at least ¥4 of remainder e
v
O(K) matches played in total. o0 c o0
K :
Expected Regret: O —log T
€ 20000

Limitations

(Bandit < retrieval function)

Ignores context
— Maybe one is better for some queries/users but not others

Assumes quality of retrieval functions are static
— Maybe quality changes as users / documents change

Inefficient for large K
— Assume additional structure on for retrieval functions?

Assumes strong stochastic transitivity
— User preferences are probably not magnitude preserving
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Analyzing IF2

O(K) total matches

1
Each match incurs regret O(f log T]
— Depends on & = K2T1 ¢

Finds best bandit w.p. 1-1/T e
Expected regret: [ JoX JoF |
ER :=(1-i]o(5|ogTj+10(r) éonoe
T & T
- K H
E =0| —logT
k- [ P ) T Y T



