

The K-armed Dueling Bandits Problem

CS 6784 April 13th, 2010

Yisong Yue Cornell University

Joint work with: Josef Broder, Robert Kleinberg, Thorsten Joachims

Online Learning

- Learn "on the fly"
 Multi-armed Bandit Problem
- · Broadly applicable
 - Many systems interact with environment
 - Can collect feedback, learn automatically
- · How to analyze performance?
 - Utilities of strategies chosen vs best in hindsight
 - Also known as "regret"

Absolute Explicit Feedback

Absolute Explicit Feedback

Relative Implicit Feedback

Relative Implicit Feedback

Team-Game Interleaving (Comparison Oracle for Search Applications)

 $\label{eq:constraint} \begin{array}{l} \mbox{Interpretation:} (r_1 > r_2) \leftrightarrow \mbox{clicks}(T_1) > \mbox{clicks}(T_2) \\ \mbox{[Radlinski, Kurup, Joachims, CIKM 2008]} \end{array}$

Dueling Bandits Problem

- Given K bandits b₁, ..., b_K
- Each iteration: compare (duel) two bandits – E.g., interleaving two retrieval functions
- · Comparison is noisy
 - Each comparison result independent
 - Comparison probabilities initially unknown
 - Comparison probabilities fixed over time
- · Total preference ordering, initially unknown

Dueling Bandits Problem

- · Want to find best (or good) bandit
 - Similar to finding the max w/ noisy comparisons
 - Ours is a regret minimization setting
- Choose pair (b_t, b_t') to minimize regret:

$$R_{T} = \sum_{t=1}^{T} P(b^{*} > b_{t}) + P(b^{*} > b_{t}') - 1$$

• (% users who prefer best bandit over chosen ones)

$$R_{T} = \sum_{t=1}^{T} P(b^{*} > b_{t}) + P(b^{*} > b_{t}') - 1$$

•Example 1 •P(f* > f) = 0.9 •P(f* > f') = 0.8 •Incurred Regret = 0.7

•Example 2 •P(f* > f) = 0.7 •P(f* > f') = 0.6 •Incurred Regret = 0.3

•Example 3 •P(f* > f) = 0.51 •P(f* > f) = 0.55 •Incurred Regret = 0.06

Assumptions

- $P(b_i > b_j) = \frac{1}{2} + \epsilon_{ij}$ (distinguishability)
- Strong Stochastic Transitivity

- For three bandits $b_i > b_j > b_k$: $\mathcal{E}_{ik} \ge \max \{\mathbf{z}_{ij}, \mathcal{E}_{jk}\}$ - Monotonicity property

- Monotonicity property
- Stochastic Triangle Inequality
 - For three bandits b_i > b_j > b_k:
 Diminishing returns property
- Satisfied by many standard models
 E.g., Logistic / Bradley-Terry

		_
	1	
	1	
	/	
/		

 $\varepsilon_{ik} \leq \varepsilon_{ii} + \varepsilon_{ik}$

Examples

	Α	В	С	D		Α	в	С	
Α	0	0.2	0.3	0.4	Α	0	0.2	0.3	
в	-0.2	0	0.1	0.3	в	-0.2	0	0.1	
С	-0.3	-0.1	0	0.1	С	-0.3	-0.1	0	
D	-0.4	-0.3	-0.1	0	D	0.1	-0.3	-0.1	
	Α	D	0	-			-	-	
		Б	ι C	D		A	в	С	
Α	0	0.2	0.4	0.4	A	А 0	в 0.2	C 0.1	,
A B	0 - 0.2	0.2	0.4 0.1	0.4 0.3	AB	0 -0.2	в 0.2 0	C 0.1 0.1	,
A B C	0 -0.2 -0.4	0.2 0 -0.1	0.4 0.1 0	0.4 0.3 0.1	A B C	0 -0.2 -0.1	0.2 0 -0.1	C 0.1 0.1 0	

 $[\]mathsf{P}(\mathsf{A} > \mathsf{B}) = \frac{1}{2} + \varepsilon_{\mathsf{A}\mathsf{B}}$

Explore then Exploit

- · First explore
 - Try to gather as much information as possible
 - Accumulates regret based on which bandits we decide to compare
- · Then exploit
 - We have a (good) guess as to which bandit best
 - Repeatedly compare that bandit with itself
 - · (i.e., interleave that ranking with itself)

Goal

 An explore algorithm that finds the best bandit with probability at least 1-1/T

$$R_{T} = \sum_{t=1}^{T} P(b^{*} > b_{t}) + P(b^{*} > b_{t}') - 1$$

Let R_E be the regret of running explore alg.

$$E \mathbf{k}_{T} \stackrel{=}{=} \left(1 - \frac{1}{T}\right) R_{E} + \frac{1}{T} O(T)$$
$$E \mathbf{k}_{T} \stackrel{=}{=} O \mathbf{k}_{E} \stackrel{=}{\supset}$$

Goal

$$E \mathbf{k}_{T} \stackrel{=}{=} \left(1 - \frac{1}{T}\right) \mathbf{R}_{E} + \frac{1}{T}O(T)$$
$$E \mathbf{k}_{T} \stackrel{=}{=} O \mathbf{\mathfrak{R}}_{E} \stackrel{\sim}{>}$$

- Explore algorithm accumulates R_E = o(T)
- Average regret R_E/T converges to 0 as T grows

• Goal:
$$R_E = O\left(\frac{K}{\varepsilon}\log T\right)$$
 $\varepsilon = \min(\varepsilon_{12}, \varepsilon_{13}, \dots, \varepsilon_{1K}) = \varepsilon_{12}$

Mathematical Tools

- Union bound: $P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} P \langle \mathbf{A}_{i} \rangle$
- Tail bound (Hoeffding): $P \oint_n E \int_n \ge nL \le e^{-2nL^2}$

 X_1, \ldots, X_n (random variables between [0,1])

$$S_n = X_1 + \ldots + X_n$$

· (probably the most useful slide in this lecture)

Comparing One Pair

Comparisons are noisy

$$- P(b_i > b_j) = \frac{1}{2} + \epsilon_{ij}$$

- (assume
$$\epsilon_{ij} > 0$$
)

- How many comparisons are needed to confirm that $\epsilon_{ii} > 0$ with confidence 1- $\! \delta ?$
- Can use Hoeffding bound to show $O\left(\frac{1}{\varepsilon_{ij}^2}\log\frac{1}{\delta}\right)$ (with high probability)

Naïve Approach

- · In deterministic case, O(K) comparisons to find max
- Extend to noisy case:
 - Repeatedly compare until confident one is better
- Problem: comparing two awful (but similar) bandits
 Waste comparisons to see which awful bandit is better
 - Incur high regret for each comparison
 - Also applies to elimination tournaments

$$R_T = O\left(\frac{K}{\varepsilon^2}\log T\right)$$

Interleaved Filter

- · Choose candidate bandit at random
- Make noisy comparisons (Bernoulli trial) against all other bandits simultaneously

 Maintain mean and confidence interval for each pair of bandits being compared
- ...until another bandit is better – With confidence 1 – δ

•

- Repeat process with new candidate

 (Remove all empirically worse bandits)
- Continue until 1 candidate left

Regret Analysis

- **Round:** all the time steps for a particular candidate bandit
 - Halts when better bandit found ...
 - ... with 1- δ confidence
 - Choose $\delta = 1/(TK^2)$
- Match: all the comparisons between two bandits in a round
 - At most K matches in each round
 - Candidate plays one match against each remaining bandit

Per-Match Regret

- Number of comparisons in match $b_i vs b_j: O\left(\frac{1}{\max \left\{\frac{1}{w_i}, c_{ij}^2\right\}}bgT\right)$
 - $\epsilon_{1i} > \epsilon_{ij}$: round ends before concluding $b_i > b_j$
 - $\epsilon_{1i} < \epsilon_{ij}$: conclude $b_i > b_j$ before round ends, remove b_j
- Pay $\epsilon_{1i} + \epsilon_{1j}$ regret for each comparison – By triangle inequality $\epsilon_{1i} + \epsilon_{1j} \le 2^* \max\{\epsilon_{1i}, \epsilon_{ij}\}$
 - Thus by stochastic transitivity accumulated regret is

$$O\left(\frac{1}{\max \left\{\mathbf{u}_{ij}, \varepsilon_{ij}\right\}} \log T\right) \le O\left(\frac{1}{\varepsilon} \log T\right)$$

 $\epsilon = min \ (\epsilon_{12}, \ \epsilon_{13}, \ \dots \ \epsilon_{1K}) = \epsilon_{12}$

Analyzing IF1

- At most K matches per round
- Regret per match: $O\left(\frac{1}{\varepsilon}\log T\right)$
- How many rounds?
 Model the sequence of candidate bandits

that O(log K) rounds w.h.p. • Total regret: $O\left(\frac{K \log K}{c} \log T\right)$

- as a random walk – Can prove using tail bounds (Chernoff)
 - ••••• :

- Analyzing IF1
- How does IF1 avoid quadratic dependence on 1/ε?
 - Length of all matches in round bounded by length of match with winner
 - Does not waste time on "close" bandits
- But now has extra log K factor
 Because there are log K rounds
 - Will fix this with IF2

....

Removing Inferior Bandits

At conclusion of each round

Intuition:

- Remove any empirically worse bandits
- High confidence that winner is better than incumbent candidate
- Empirically worse bandits cannot be "much better" than incumbent candidate
- Can show via Hoeffding bound that winner is also better than empirically worse bandits with high confidence
- Preserves 1-1/T confidence overall that we'll find the best bandit

Analyzing IF2

- "Pruning" at the end of each round
 - Removes empirically inferior bandits
 - Even if not 1- δ confident
 - We still find best bandit w.p. 1-1/T
- How many pruned each round?
 In expectation at least ¼ of remainder
- O(K) matches played in total.
- Expected Regret: $O\left(\frac{K}{\varepsilon}\log T\right)$

€ € € € € € € € €
:

Analyzing IF2

• O(K) total matches • Each match incurs regret $O\left(\frac{1}{\varepsilon}\log T\right)$ • Finds best bandit w.p. 1-1/T • Expected regret: $E \mathbf{k}_T = \left(1 - \frac{1}{T}\right)O\left(\frac{K}{\varepsilon}\log T\right) + \frac{1}{T}O(T)$ $E \mathbf{k}_T = O\left(\frac{K}{\varepsilon}\log T\right)$

Limitations

- (Bandit ⇔ retrieval function)
- · Ignores context
 - Maybe one is better for some queries/users but not others
- Assumes quality of retrieval functions are static
 Maybe quality changes as users / documents change
- Inefficient for large K
 - Assume additional structure on for retrieval functions?
- · Assumes strong stochastic transitivity
 - User preferences are probably not magnitude preserving