
Exploration Scavenging

John Langford Alex Strehl Jennifer Wortman

Presented by Nikos Karamapatziakis and Devin Kennedy

8 April, 2010

Langford et. al. Exploration Scavenging

Motivating application - web advertising

A common framework for many systems (ad = result)

System shows an ad.

User clicks on it if she likes it.

What if the system had shown a different ad?

System should learn to suggest relevant ads.

Langford et. al. Exploration Scavenging

Motivating application - web advertising

A common framework for many systems (ad = result)

System shows an ad.

User clicks on it if she likes it.

What if the system had shown a different ad?

System should learn to suggest relevant ads.

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?
2 ? 0 ? ?

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?
2 ? 0 ? ?
3 5 ? ? ?
4 ? ? ? 2
5 0 ? ? ?
6 ? ? ? 4

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 5 0 1 2
2 0 0 3 2
3 5 3 1 3
4 0 1 2 2
5 0 1 7 2
6 0 1 0 4

Total 10 6 14 15

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 5 0 1 2
2 0 0 3 2
3 5 3 1 3
4 0 1 2 2
5 0 1 7 2
6 0 1 0 4

Total 10 6 14 15

Gambler’s reward: 1 + 0 + 5 + 2 + 0 + 4 = 12.
Gambler’s regret: 15− 12 = 3

Langford et. al. Exploration Scavenging

Exploration vs. exploitation

Suppose the gambler has discovered a slot machine with
fairly good reward rate.

Should he continue playing on (exploiting) that
machine?

What if he does?

What if he does not?

A bandit algorithm (policy) must balance exploring
different options and exploiting the best option so far.

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.84 ?

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.62

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.84 0.62

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.73 ?

0.79 0.62

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.03

0.79 0.32

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.78 ?

0.78 0.32

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.75 ?

0.78 0.32

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.82 ?

0.78 0.32

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.69

0.78 0.44

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.83 ?

0.79 0.44

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.51

0.79 0.46

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.81 ?

0.80 0.46

Langford et. al. Exploration Scavenging

The contextual k-armed bandit problem

What is the contextual k-armed bandit problem?

Online multi-class classification with partial feedback.

Langford et. al. Exploration Scavenging

The contextual k-armed bandit problem

Given an arbitrary input space X and a set of actions
A = {1, · · · , k}, in each round t:

a tuple (xt ,�rt) is drawn from some distribution over
tuples of inputs and k-dimensional reward vectors,
and xt is presented to the algorithm;

the algorithm chooses an action at ∈ A;

a reward rt,at
of action at is announced.

Goal: maximize the sum of rewards over the rounds of
interaction.

Langford et. al. Exploration Scavenging

Problem Statement

Suppose we already have a data set generated by
following a policy (algorithm) π. Want to estimate the
value of a different policy h:

VD(h) := E(x ,�r)∼D [rh(x)].

Where D is the distribution over tuples (x ,�r) of inputs
x ∈ X and rewards �r ∈ [0, 1]k .

When is this possible?

Langford et. al. Exploration Scavenging

Impossibility Theorem

Evaluation is not possible when the exploration policy π
depends on the current input. Consider the two problems
(distributions) defined by:

Under D Under D ′

rt,0 rt,1 rt,0 rt,1
xt = 0 0 0 0 1
xt = 1 0 1 1 1

Exploration policy: π(x) = x . Want to evaluate the
policy h(x) = 1− x . What happens?

Langford et. al. Exploration Scavenging

Estimating value with special restrictions

Suppose we severely restrict the behavior of π:

for each action a, π chooses a exactly Ta times,
where Ta > 0;

π chooses at independent of xt .

Then for all D,

VD(h) = E{xt ,�rt}∼DT

[
T∑

t=1

rt,at
I (h(xt) = at)

Tat

]
.

Langford et. al. Exploration Scavenging

Understanding the estimator

This expression for VD(h) is actually very simple.

Langford et. al. Exploration Scavenging

Quantifying usefulness of the estimator

For every sequence T of actions, for any δ ∈ (0, 1), with
probability 1− δ, it holds that∣∣∣∣∣VD(h)−

T∑
t=1

rt,at
I (h(xt) = at)

Tat

∣∣∣∣∣ ≤
k∑

a=1

√
2 ln(2kT/δ)

Ta
.

Accordingly, as T →∞, the estimator

V̂D(h) =
T∑

t=1

rt,at
I (h(xt) = at)

Tat

grows arbitrarily close to VD(h) with probability 1.

Langford et. al. Exploration Scavenging

Application

Evaluation of different ad serving algorithms.

Costly to evaluate on live system.

Instead use proposed estimator with logged data.

How is this a contextual k-armed bandit problem?

Langford et. al. Exploration Scavenging

Direct approach

Input space X is set of all pages.

Set of actions A is set of all advertisements.

In each round, algorithm chooses an advertisement
for the page. Reward computed based on user
action.

Direct approach for multiple advertisements:
Have an action for every slate of ads

� exponentially large set of actions . . .

Langford et. al. Exploration Scavenging

Factoring Assumption

Assumption: probability of clicking ad a at position i on
page x is

P(x , a, i) = Ci · P(x , a)

P(x , a): position independent click through rate.
Ci : Attention Decay Coefficient (ADC). C1 = 1

Transform a slate of � ads to � examples.

Set the reward for clicking on i -th ad to

r ′i = r/Ci 1 ≤ i ≤ �

where r indicates whether the slate received clicks.

Langford et. al. Exploration Scavenging

Estimating ADC Naively

New estimator:

V̂D(h) =
T∑

t=1

�∑
i=1

r ′i Cσ(ai ,x)

Tai

Only need to estimate Ci . However the straightforward

Ĉi :=

∑
a Clicks(a,i)∑

a Impressions(a,i)∑
a Clicks(a,1)∑

a Impressions(a,1)

is biased towards underestimating Ci .
Current policy already fairly good.

Langford et. al. Exploration Scavenging

An example

Assume two slots, and two ads “a” and “b”.
User always clicks: 3/4 of the time on “a”, 1/4 on “b”.
Clearly, C2 = 1
If “a” is the first ad 90% of the time then Ĉ2 = 3

7 .

Langford et. al. Exploration Scavenging

Better Estimator of ADC

Average the click-through rates instead of the clicks.

Ĉi :=

∑
a λaCTR(a, i)∑
a λaCTR(a, 1)

λa should be set so as to minimize Var[Ĉi].
Alternatively, set λa so as to minimize variance of∑

a

λaCTR(a, i) +
∑

a

λaCTR(a, 1) s.t
∑

a

λa = 1

which is analytically tractable.

Langford et. al. Exploration Scavenging

Empirical comparison

Estimating ADCs from Yahoo! logs leads to similar
values as the much advocated DCG (i) = 1/ log2(i + 2).

For evaluating ad serving policies restrict attention to hπ

that reorder the results of π. Much smaller variance.

Two reordering policies were evaluated

hπ reorders results of π according to their CTR.

h′π reorders results of π randomly.

Estimator is higher for hπ as expected.

Langford et. al. Exploration Scavenging

Thank you

Questions?

Langford et. al. Exploration Scavenging

A newer paper (Strehl, Langford, Kakade)

Lifts assumption that π, h do not depend on xt

Estimate the probability that π will choose a. E.g.

π̂(a|x) =
|{t|at = a ∧ xt = x}|

|{t|xt = x}|
To evaluate a non-adaptive h

V̂ h
π̂ =

1

|S |
∑

(x ,a,ra)∈S

raI (h(x) = a)

max{π̂(a|x), τ}

Langford et. al. Exploration Scavenging

Easy corollary of their theorem

If π(h(x)|x) > τ for all x then

E [|V̂ h
π̂ − V h|] ≤

√
Ex [maxa(π(a|x)− π̂(a|x))2]

τ

Assumption makes bound prettier; not necessary for the
theorem.

Langford et. al. Exploration Scavenging

Learning a policy

Let C (x) = {a|π̂(at |xt) > 0}
Learn a policy h(x) = argmaxa∈C (x) f (x , a) by minimizing

∑
t

(yt − f (xt , at))
2

max{π̂(at |xt), τ}

over a set of (xt , at , yt) triples. yt = 1 iff at was clicked.
Finally estimate quality of h on test data by

V̂ h
π̂ =

1

T

T∑
t=1

yt I (h(xt) = at)

max{π̂(at |xt), τ}

Langford et. al. Exploration Scavenging

