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Motivating application - web advertising

A common framework for many systems (ad = result)

System shows an ad.

User clicks on it if she likes it.

What if the system had shown a different ad?

System should learn to suggest relevant ads.

Langford et. al. Exploration Scavenging

Motivating application - web advertising

A common framework for many systems (ad = result)

System shows an ad.

User clicks on it if she likes it.
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The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
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The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?
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The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?
2 ? 0 ? ?
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The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 ? ? 1 ?
2 ? 0 ? ?
3 5 ? ? ?
4 ? ? ? 2
5 0 ? ? ?
6 ? ? ? 4
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The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 5 0 1 2
2 0 0 3 2
3 5 3 1 3
4 0 1 2 2
5 0 1 7 2
6 0 1 0 4

Total 10 6 14 15

Langford et. al. Exploration Scavenging

The multi-armed bandit problem

Captures the essence of this setting, and many others.

Round
1 5 0 1 2
2 0 0 3 2
3 5 3 1 3
4 0 1 2 2
5 0 1 7 2
6 0 1 0 4

Total 10 6 14 15

Gambler’s reward: 1 + 0 + 5 + 2 + 0 + 4 = 12.
Gambler’s regret: 15− 12 = 3
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Exploration vs. exploitation

Suppose the gambler has discovered a slot machine with
fairly good reward rate.

Should he continue playing on (exploiting) that
machine?

What if he does?

What if he does not?

A bandit algorithm (policy) must balance exploring
different options and exploiting the best option so far.
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.84 ?
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.62
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.73 ?

0.79 0.62
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.03

0.79 0.32
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.78 ?

0.78 0.32
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.75 ?

0.78 0.32
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.82 ?

0.78 0.32
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.69

0.78 0.44
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.83 ?

0.79 0.44
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

? 0.51

0.79 0.46
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UCB1: a simple bandit algorithm

Initially play each machine once.
On round t > k determine intervals (µ̂j − cj , µ̂j + cj) s.t.

Pr(µ̂j − cj < µ̂j < µ̂j + cj) ≥ 1− 1

t4

Play machine with highest µ̂j + cj .

0.81 ?

0.80 0.46
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The contextual k-armed bandit problem

What is the contextual k-armed bandit problem?

Online multi-class classification with partial feedback.
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The contextual k-armed bandit problem

Given an arbitrary input space X and a set of actions
A = {1, · · · , k}, in each round t:

a tuple (xt ,�rt) is drawn from some distribution over
tuples of inputs and k-dimensional reward vectors,
and xt is presented to the algorithm;

the algorithm chooses an action at ∈ A;

a reward rt,at
of action at is announced.

Goal: maximize the sum of rewards over the rounds of
interaction.
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Problem Statement

Suppose we already have a data set generated by
following a policy (algorithm) π. Want to estimate the
value of a different policy h:

VD(h) := E(x ,�r)∼D [rh(x)].

Where D is the distribution over tuples (x ,�r) of inputs
x ∈ X and rewards �r ∈ [0, 1]k .

When is this possible?
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Impossibility Theorem

Evaluation is not possible when the exploration policy π
depends on the current input. Consider the two problems
(distributions) defined by:

Under D Under D ′

rt,0 rt,1 rt,0 rt,1
xt = 0 0 0 0 1
xt = 1 0 1 1 1

Exploration policy: π(x) = x . Want to evaluate the
policy h(x) = 1− x . What happens?
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Estimating value with special restrictions

Suppose we severely restrict the behavior of π:

for each action a, π chooses a exactly Ta times,
where Ta > 0;

π chooses at independent of xt .

Then for all D,

VD(h) = E{xt ,�rt}∼DT

[
T∑

t=1

rt,at
I (h(xt) = at)

Tat

]
.
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Understanding the estimator

This expression for VD(h) is actually very simple.
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Quantifying usefulness of the estimator

For every sequence T of actions, for any δ ∈ (0, 1), with
probability 1− δ, it holds that∣∣∣∣∣VD(h)−

T∑
t=1

rt,at
I (h(xt) = at)

Tat

∣∣∣∣∣ ≤
k∑

a=1

√
2 ln(2kT/δ)

Ta
.

Accordingly, as T →∞, the estimator

V̂D(h) =
T∑

t=1

rt,at
I (h(xt) = at)

Tat

grows arbitrarily close to VD(h) with probability 1.
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Application

Evaluation of different ad serving algorithms.

Costly to evaluate on live system.

Instead use proposed estimator with logged data.

How is this a contextual k-armed bandit problem?
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Direct approach

Input space X is set of all pages.

Set of actions A is set of all advertisements.

In each round, algorithm chooses an advertisement
for the page. Reward computed based on user
action.

Direct approach for multiple advertisements:
Have an action for every slate of ads

� exponentially large set of actions . . .
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Factoring Assumption

Assumption: probability of clicking ad a at position i on
page x is

P(x , a, i) = Ci · P(x , a)

P(x , a): position independent click through rate.
Ci : Attention Decay Coefficient (ADC). C1 = 1

Transform a slate of � ads to � examples.

Set the reward for clicking on i -th ad to

r ′i = r/Ci 1 ≤ i ≤ �

where r indicates whether the slate received clicks.
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Estimating ADC Naively

New estimator:

V̂D(h) =
T∑

t=1

�∑
i=1

r ′i Cσ(ai ,x)

Tai

Only need to estimate Ci . However the straightforward

Ĉi :=

∑
a Clicks(a,i)∑

a Impressions(a,i)∑
a Clicks(a,1)∑

a Impressions(a,1)

is biased towards underestimating Ci .
Current policy already fairly good.
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An example

Assume two slots, and two ads “a” and “b”.
User always clicks: 3/4 of the time on “a”, 1/4 on “b”.
Clearly, C2 = 1
If “a” is the first ad 90% of the time then Ĉ2 = 3

7 .
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Better Estimator of ADC

Average the click-through rates instead of the clicks.

Ĉi :=

∑
a λaCTR(a, i)∑
a λaCTR(a, 1)

λa should be set so as to minimize Var[Ĉi ].
Alternatively, set λa so as to minimize variance of∑

a

λaCTR(a, i) +
∑

a

λaCTR(a, 1) s.t
∑

a

λa = 1

which is analytically tractable.
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Empirical comparison

Estimating ADCs from Yahoo! logs leads to similar
values as the much advocated DCG (i) = 1/ log2(i + 2).

For evaluating ad serving policies restrict attention to hπ

that reorder the results of π. Much smaller variance.

Two reordering policies were evaluated

hπ reorders results of π according to their CTR.

h′π reorders results of π randomly.

Estimator is higher for hπ as expected.
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Thank you

Questions?
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A newer paper (Strehl, Langford, Kakade)

Lifts assumption that π, h do not depend on xt

Estimate the probability that π will choose a. E.g.

π̂(a|x) =
|{t|at = a ∧ xt = x}|

|{t|xt = x}|
To evaluate a non-adaptive h

V̂ h
π̂ =

1

|S |
∑

(x ,a,ra)∈S

raI (h(x) = a)

max{π̂(a|x), τ}
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Easy corollary of their theorem

If π(h(x)|x) > τ for all x then

E [|V̂ h
π̂ − V h|] ≤

√
Ex [maxa(π(a|x)− π̂(a|x))2]

τ

Assumption makes bound prettier; not necessary for the
theorem.
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Learning a policy

Let C (x) = {a|π̂(at |xt) > 0}
Learn a policy h(x) = argmaxa∈C (x) f (x , a) by minimizing

∑
t

(yt − f (xt , at))
2

max{π̂(at |xt), τ}

over a set of (xt , at , yt) triples. yt = 1 iff at was clicked.
Finally estimate quality of h on test data by

V̂ h
π̂ =

1

T

T∑
t=1

yt I (h(xt) = at)

max{π̂(at |xt), τ}
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