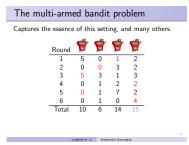


Langford et. al. Exploration Scavenging



Captures th	e essence	of th	is setti	ing, ar	nd many other
	Round	۴	۴	۴	堂
	1	5	0	1	2
	2	0	0	3	2
	3	5	3	1	3
	4	0	1	2	2
	5	0	1	7	2
	6	0	1	0	4
	Total	10	6	14	15
Gambler's re	ward 1	+0+	5 + 2	+0+	4 - 12

Exploration vs. exploitation

Suppose the gambler has discovered a slot machine with fairly good reward rate. • Should he continue playing on (exploiting) that machine? • What if he does? • What if he does not? A bandit algorithm (policy) must balance exploring different options and exploiting the best option so far.

Langford et. al. Exploration Scavenging

UCB1: a simple bandit algorithm

Initially play each machine once. On round t > k determine intervals $(\hat{\mu}_j - c_j, \hat{\mu}_j + c_j)$ s.t. $\Pr(\hat{\mu}_j - c_j < \hat{\mu}_j < \hat{\mu}_j + c_j) \ge 1 - \frac{1}{t^4}$ Play machine with highest $\hat{\mu}_j + c_j$.

aford et. al. Exploration Scavenaina

 $\label{eq:UCB1: a simple bandit algorithm} \label{eq:UCB1: a simple bandit algorithm} \label{eq:UCB1: a simple bandit algorithm} \end{tabular} \end{tab$

The contextual k-armed bandit problem

What is the contextual k-armed bandit problem?

$$\begin{array}{c} \underbrace{D}_{\substack{\text{states} \\ |t| \in [t] \\ |t$$

Online multi-class classification with partial feedback.

The contextual k-armed bandit problem

Given an arbitrary input space $\mathcal X$ and a set of actions $\mathcal A=\{1,\cdots,k\},$ in each round t:

• a tuple (x_t, \vec{r}_t) is drawn from some distribution over tuples of inputs and k-dimensional reward vectors, and x_t is presented to the algorithm;

• the algorithm chooses an action $a_t \in \mathcal{A}$;

• a reward r_{t,a_t} of action a_t is announced.

Goal: maximize the sum of rewards over the rounds of interaction.

Langford et. al. Exploration Scavenging

Problem Statement

Suppose we already have a data set generated by following a policy (algorithm) π . Want to estimate the value of a *different* policy *h*:

 $V_D(h) := E_{(x,\vec{r})\sim D}[r_{h(x)}].$ Where D is the distribution over tuples (x,\vec{r}) of inputs $x\in\mathcal{X}$ and rewards $\vec{r}\in[0,1]^k.$

Langford et. al. Exploration Scavenging

When is this possible?

Impossibility Theorem

Evaluation is not possible when the exploration policy π depends on the current input. Consider the two problems (distributions) defined by:

	Under D		Under D'		
	<i>r</i> _{t,0}	<i>r</i> _{t,1}	<i>r</i> _{t,0}	<i>r</i> _{<i>t</i>,1}	
$x_t = 0$	0	0	0	1	
$x_{t} = 1$	0	1	1	1	

Langford et. al. Exploration Scavenging

Exploration policy: $\pi(x) = x$. Want to evaluate the policy h(x) = 1 - x. What happens?

Estimating value with special restrictions

Suppose we severely restrict the behavior of π : • for each action a, π chooses a exactly T_a times, where $T_a > 0$;

• π chooses a_t independent of x_t .

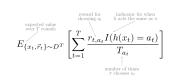
Then for all D,

 $V_D(h) = E_{\{x_t, \vec{r}_t\} \sim D^T} \left[\sum_{t=1}^T \frac{r_{t,a_t} I(h(x_t) = a_t)}{T_{a_t}} \right]$

ed et. al. Exploration Scavenging

Understanding the estimator

This expression for $V_D(h)$ is actually very simple.



Langford et. al. Exploration Scavenging

	Quantifying usefulness of the estimator
	For every sequence T of actions, for any $\delta \in (0,1),$ with probability $1-\delta,$ it holds that
	$\left V_D(h) - \sum_{t=1}^T \frac{r_{t,a_t} l(h(x_t) = a_t)}{T_{a_t}}\right \leq \sum_{a=1}^k \sqrt{\frac{2\ln(2kT/\delta)}{T_a}}.$
	Accordingly, as $\mathcal{T} \rightarrow \infty,$ the estimator
	$\hat{V}_{D}(h) = \sum_{t=1}^{T} \frac{r_{t,s_{t}} l(h(x_{t}) = a_{t})}{T_{a_{t}}}$
	grows arbitrarily close to $V_D(h)$ with probability 1.
-	

Application

• Evaluation of different ad serving algorithms.

Costly to evaluate on live system.

Instead use proposed estimator with logged data.

How is this a contextual k-armed bandit problem?

Langford et. al. Exploration Scaverging

Direct approach

 \bullet Input space ${\mathcal X}$ is set of all pages.

Set of actions A is set of all advertisements.In each round, algorithm chooses an advertisement

for the page. Reward computed based on user action.

Langford et. al. Exploration Scavenging

Direct approach for *multiple* advertisements: • Have an action for every slate of ads + exponentially large set of actions ...

Factoring Assumption

Assumption: probability of clicking ad a at position i on page x is

 $\begin{array}{l} \mathcal{P}(x,a,i) = C_i \cdot \mathcal{P}(x,a) \\ \mathcal{P}(x,a): \mbox{ position independent click through rate.} \\ C_i: \mbox{ Attention Decay Coefficient (ADC). } C_i = 1 \\ \bullet \mbox{ Transform a slate of } \ell \mbox{ ads to } \ell \mbox{ examples.} \\ \bullet \mbox{ Set the reward for clicking on } i \mbox{ -th ad to } \end{array}$

 $r'_i = r/C_i$ $1 \le i \le \ell$

where *r* indicates whether the slate received clicks.

Estimating ADC Naively

New estimator:

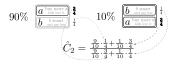
 $\hat{V}_D(h) = \sum_{t=1}^T \sum_{i=1}^\ell \frac{r_i^t C_{\sigma(s_i,x)}}{T_{s_i}}$ Only need to estimate $C_i.$ However the straightforward

 $\hat{C}_{i} := \frac{\frac{\sum_{a} Clicks(a,i)}{\sum_{a} Impressions(a,i)}}{\frac{\sum_{a} Clicks(a,1)}{\sum_{a} Impressions(a,1)}}$

Langford et. al. Exploratio

is biased towards underestimating C_i . Current policy already fairly good.

Assume two slots, and two ads "a" and "b". User always clicks: 3/4 of the time on "a", 1/4 on "b". Clearly, $C_2 = 1$. If "a" is the first ad 90% of the time then $\hat{C}_2 = \frac{3}{7}$.



Better Estimator of ADC

Average the click-through rates instead of the clicks.

 $\hat{C}_i := \frac{\sum_s \lambda_s CTR(s,i)}{\sum_s \lambda_s CTR(s,i)}$ λ_s should be set so as to minimize $Var[\hat{C}_i].$ Alternatively, set λ_s so as to minimize variance of

 $\sum_{a} \lambda_{a} CTR(a, i) + \sum_{a} \lambda_{a} CTR(a, 1) \quad s.t \sum_{a} \lambda_{a} = 1$

d et. al. Exploration Scavenging

which is analytically tractable.

Empirical comparison

Estimating ADCs from Yahoo! logs leads to similar values as the much advocated $DCG(i) = 1/\log_2(i+2)$.

For evaluating ad serving policies restrict attention to h_{π} that reorder the results of $\pi.$ Much smaller variance.

Langford et. al. Exploration Scavenging

Two reordering policies were evaluated • h_{π} reorders results of π according to their CTR. • h'_{π} reorders results of π randomly. Estimator is higher for h_{π} as expected.

Thank you

Questions?

ford et. al. Exploration Scavenging

A newer paper (Strehl, Langford, Kakade)

Lifts assumption that π , h do not depend on x_t Estimate the probability that π will choose a. E.g. $\hat{\pi}(a|x) = \frac{|\{t|a_t = a \land x_t = x\}|}{|\{t|x_t = x\}|}$ To evaluate a *non-adaptive* h

evaluate a non-adaptive h

$\hat{V}^h_{\hat{\pi}} = \frac{1}{|S|} \sum_{(x,a,r_a)\in S} \frac{r_a l(h(x) = a)}{\max\{\hat{\pi}(a|x), \tau\}}$

Langford et. al. Exploration Scavenging

Easy corollary of their theorem

If $\pi(h(x)|x) > \tau$ for all x then

 $E[|\hat{V}^h_{\hat{\pi}} - V^h|] \leq \frac{\sqrt{E_x[\max_a(\pi(a|x) - \hat{\pi}(a|x))^2]}}{\tau}$

Assumption makes bound prettier; not necessary for the theorem.

Langford et. al. Exploration Scavenging

Learning a policy

Let $C(x) = \{a | \hat{\pi}(a_t | x_t) > 0\}$ Learn a policy $h(x) = \operatorname{argmax}_{a \in C(x)} f(x, a)$ by minimizing

 $\sum_t \frac{(y_t - f(x_t, a_t))^2}{\max\{\hat{\pi}(a_t | x_t), \tau\}}$

over a set of (x_t, a_t, y_t) triples. $y_t = 1$ iff a_t was clicked. Finally estimate quality of h on test data by

 $\hat{V}^h_{\hat{\pi}} = \frac{1}{T} \sum_{t=1}^T \frac{y_t l(h(x_t) = a_t)}{\max\{\hat{\pi}(a_t | x_t), \tau\}}$