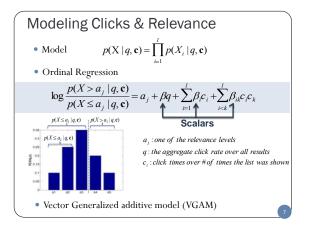
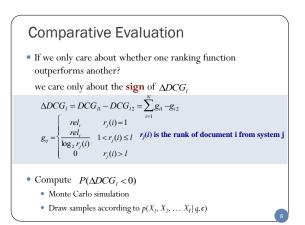
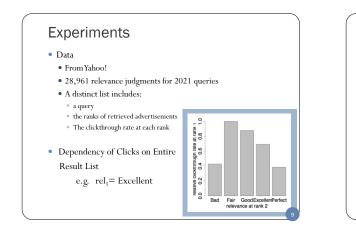
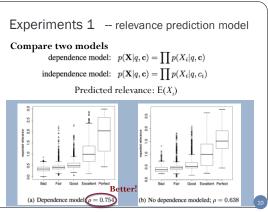
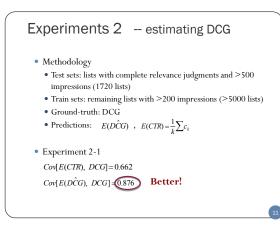

Introduction


- How to evaluate search engines?
 - Use relevance judgments
 - Complete relevance judgments not available
- How to predict relevance?
 - Use clicks
 - General problem: Clicks are biased!
- This work:


Model the relationship between relevance & clicks







Experiments 2 -- estimating DCG

Experiment 2-2

without vs. with additional two manual judgments on documents recommended by the system

Confidence in ΔDCG: P(ΔDCG<0)

Confidence	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 0.95	0.95 - 1.0
Accuracy clicks-only	0.522	0.617	0.734	0.818	-	-
Accuracy 2 judgments	0.572	0.678	0.697	0.890	0.918	0.940

Summary

- Propose a method to evaluate search engines by modeling the relationship between relevance and clicks
 - Predict relevance using clicks

• Dependence model
$$p(\mathbf{X} | q, \mathbf{c}) = \prod_{i=1}^{i} p(X_i | q, \mathbf{c})$$

- Estimate DCG with the predicted relevance
- Compare different rankings

Appendix						
Select Documents to Judg	е					
 What if confident estimates are low? 						
Obtain more relevance judgments from human.	$\Delta DCG_{l} = \sum_{i=1}^{N} g_{i1} - g_{i2}$					
Intuitions: 1. $r_1(i) = r_2(i)$ ignore	$\Delta DCG_{i} = \sum_{i=1}^{g_{i1}} \frac{-g_{i2}}{r_{j}(i) = 1}$ $g_{ij} = \begin{cases} rel_{i} & r_{j}(i) = 1 \\ \frac{rel_{i}}{\log_{2} r_{j}(i)} & 1 < r_{j}(i) \le l \\ 0 & r_{j}(i) > l \end{cases}$					
2. $r_1(i) >> r_2(i) r_2(i) >> r_1(i)$ informative	$g_{ij} = \begin{cases} \frac{rea_i}{\log_2 r_j(i)} & 1 < r_j(i) \le l \\ 0 & r_j(i) > l \end{cases}$					
3. $rel_i > rel_j$ Algorithm 1 Iteratively select documents to judge until we have high confidence in ΔDCG .						
1: while $1 - \alpha < P(\Delta DCG < 0) < \alpha$ do						
 i[*] ← max_i E[G_{i1}] - E[G_{i2}] for all unjudged document judge document i[*] (human annotator provides rel_i*) 	s i					
4: $P(X_{i^*} = rel_{i^*}) \leftarrow 1$	_					
5: $P(X_{i^*} \neq rel_{i^*}) \leftarrow 0$ 6: estimate $P(\Delta DCG)$ using Monte Carlo simulation						
7: end while						