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Search-based Structured Prediction

Motivation

 Complex Structured Prediction Problems

 Natural Language Processing

 Speech

 Computational Biology

 Vision

 Current Algorithms

 Decomposition of loss function

 Decomposition of feature functions

What SEARN can do ?

 Structured Prediction Algorithm

 Not limited to bounded tree-width ??

 Applicable to any loss function

 Can Handle Arbitrary Features

 Can cope with imperfect data

SEARN - Overview

 Integrating SEARch and lEARNing

 Meta-algorithm

Complex Structured 

Prediction Problem
Simple Classification 

Problems
SEARN

Theoretical Guarantee

Definition: Structured Prediction 

Problem
 Definition: A structured prediction problem D is a cost-sensitive classification problem where 

Y has structure: elements y  Y decomposes into variable-length vectors                          . D is a 
distribution over inputs x   X and cost vectors c, where |c| is a variable is 2T.

 Example: Parsing Problem under F1-loss    
 x = input sequence

 y = parse tree of x

 D = distribution over (x,c) where, cy is the F1 loss of y on “true” 
output

 |c| = number of trees with |x|-many leaves

 Goal : find 

 Minimize loss 

 SEARN :          can be produced by predicting each component  


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SEARN algorithm ingredients

Ingredients Purpose

Search Space Decomposing the prediction problem

Cost-sensitive Learning Algorithm Return multiclass classifier h(s) given 

cost sensitive training data

Labeled Structured Prediction Training 

data

SEARN converts them into cost-

sensitive training data

Loss function Used to calculate “regret” for an action

Good Initial Policy Starting point of iteration
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Background

 Reinforcement Learning

 Cost Sensitive Training Data

 Multi-class Cost-sensitive Learner

Background Concepts
 Reinforcement Learning 

 set of states S

 set of actions A

 set of scalar rewards

 Find “policy” that maps states to actions such that performing 

the action results in maximum reward

Cost Sensitive Classification
 Cost sensitive example - each input sample is associated with costs

 Notation:

where                              and ci is the cost of labeling x with class I

 Thus we are looking for a function minimizing

),( cx

 kcc ,...,1c

}{ )(~),( xhDxD cEh c

Reduction to Binary Classification

(Weighted All Pairs)

Lbl:A

Costs:CAA, CAB, 

CAC

Lbl:B

Costs:CBA, CBB, 

CBC

Lbl:C

Costs:CCA, CCB, 

CCC

X1=

X2=

X3=

X3
’

= 

<X1 ,A,B>

<X1 ,A,C>

<X1 ,B,C>

X1
’

= 

X2
’

= 

<X2 ,A,B>

<X2 ,A,C>

<X2 ,B,C>

X4
’

= 

X5
’

= 

X6
’

= 

…

X3
’

= 

Step 1: Create new training set, including all pairs of classes

Step 2:Learn binary classifier h(<x,i,j>) on new training 

set

Each Weighted Pair contains information regarding which class is 

better 

Reduction to Binary Classification
 Step 3 

- For a test example x, we say that class i is better than class j if

and                              or 

and

 Step 4 

- Calculate relation (i beats j) for all (i,j)

- Use as prediction:

ji  1),,(  jixh

ji  0),,(  jixh

|} beats  |{|maxarg)( jijxh inew 

Reduction to Binary Classification

(Complete Algorithm)

 Define 
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Error Rate of WAP

• Error Rate of WAP is bounded by the error of the binary classifier

SEARN - Testing

1 1( , )s x y 2 1 2( , , )s x y y 1 2( , , ,..., )
x xT Ts x y y y

0( )h s 1( )h s 2( )h s 1( )
xTh s 

0s x

SEARN - Training

Multiclass 
Classifier

[ First Iteration    - ]

Cost-sensitive 
Classification 

Examples

(1 )new oldh h  

newh



Complete SEARN Algorithm

Feature Computations
 Compute feature vector     on the basis of state  

 Good choice of features => Good Prediction

 may depend on any aspect of input x and any past 

decision

 Example : Part of speech tagging

 : zeros everywhere except for “interesting” aspects of 

input (such as features corresponding to       and     )

 ts

( )ts

( )ts

1tx  ty

Construction of Cost-sensitive 

Examples

 Use policy h to construct cost-sensitive multiclass classification 

examples

 One path per structured training example

 Single cost-sensitive example for each state on each path

 Use loss to compute “regret”

st

st+1

st+1

a

a’

sT

sT

Execute 

policy

Execute 

policy LOSS 

KNOWN 

FOR 

THESE 

STATES 

ONLY
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Initial Policy
 Definition: For an input x and a cost vector c, and a state                                  

in the search space, the initial policy π(s,c) is                                                
. 

 That is, π chooses the action (i.e., value for       ) that minimizes 
the corresponding cost, assuming that all future decisions are 
also made optimally.

 Requirements:

 “Good” (not necessarily optimal)

 Efficiently Computable

1 2( , ,....., )ts x y y y 

1 2 1,..., ,.....,arg min min
t t T Ty y y y yc
   

1ty 

Running Example
 Part of Speech Tagging

 Single Training Point

x = “Thorsten    is    smart”  

N V ADJ

Running MEMM

<x,>

<0,1,0>

<x,N>

<1,0,0>

<x,N,N>

<1,0,0>

<x,N,N,N>

<0,0,1>

<x,N,N,V>

<0,1,0>

<x,N,N,ADJ>

<0,1,0>

<x,N,V>

<1,0,0>

<x,N,V,N>

<1,0,-1>

<x,N,V,V>

<1,1,-1>

<x,N,V,ADJ>

<0,0,1>

<x,N,ADJ>

<1,0,0>

<x,V>

<1,1,0>

<x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

After Training 

w = <0,0,-1>

Running MEMM

<x,>

<0,1,0>

<x,N>

<1,0,0>

<x,N,N>

<1,0,0>

<x,N,N,N>

<0,0,1>

<x,N,N,V>

<0,1,0>

<x,N,N,ADJ>

<0,1,0>

<x,N,V>

<1,0,0>

<x,N,V,N>

<1,0,-1>

<x,N,V,V>

<1,1,-1>

<x,N,V,ADJ>

<0,0,1>

<x,N,ADJ>

<1,0,0>

<x,V>

<1,1,0>

<x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Testing policy:

-Tie at second decision

-Suppose it chooses s2

w = <0,0,-1>

Running SEARN

(Initial Policy)

s1 = <x,>

<0,1,0>

s2 = <x,N>

<1,0,0>

s5 = <x,N,N>

<1,0,0>

s8 = <x,N,N,N>

<0,0,1>

s9 = <x,N,N,V>

<0,1,0>

s10 = <x,N,N,ADJ>

<0,1,0>

s6 = <x,N,V>

<1,0,0>

s11 = <x,N,V,N>

<1,0,-1>

s12 = <x,N,V,V>

<1,1,-1>

s13 = <x,N,V,ADJ>

<0,0,1>

s7 = <x,N,ADJ>

<1,0,0>

s3 = <x,V>

<1,1,0>

s4 = <x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Obtains same 

weight vector as 

MEMM

- w = <0,0,-1>

Running SEARN

Cost-sensitive Examples

s1 = <x, 

N> 

• For each component of the prediction, add a cost sensitive example

• Cost is calculated by 





'

'
),,(~ min a

a
yaxsearchya lcEl

n

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Running SEARN

Cost-sensitive Examples

s1 = <x, 

N> 

• For each component of the prediction, add a cost sensitive example 

to Si

• Cost is calculated by 

s2 = <x, N,V> 





'

'
),,(~ min a

a
yaxsearchya lcEl

n


s2 = <x, N,N> 

s2 = <x, N,ADJ> 

la1 = 1

la2 = 0

la3 = 1

Running SEARN

Cost-sensitive Examples

s1 = <x, 

N> 

• For each component of the prediction, add a cost sensitive example 

to Si

• Cost is calculated by 

s2 = <x, N,V> 





'

'
),,(~ min a

a
yaxsearchya lcEl

n


s2 = <x, N,N> 

s2 = <x, N,ADJ> 

la1 = 1

la2 = 0

la3 = 1 Si

<Φ(s1), <la1, la2 , la3>

Running SEARN

Cost-sensitive Examples

s3 = <x, 

N,V> 

• For each component of the prediction, add a cost sensitive example 

to Si

• Cost is calculated by 





'
'

),,(~ min a
a

yaxsearchya lcEl
n



Running SEARN

Cost-sensitive Examples

s3 = <x, 

N,V> 

• For each component of the prediction, add a cost sensitive example 

to Si

• Cost is calculated by 





'
'

),,(~ min a
a

yaxsearchya lcEl
n



la1 = 2

la2 = 1

la3 = 0

s4 = <x, N,V, 

N> 

s4 = <x, 

N,V,V> 

s4= <x, 

N,V,ADJ> 

Running SEARN

Cost-sensitive Examples

s3 = <x, 

N,V> 

• For each component of the prediction, add a cost sensitive example 

to Si

• Cost is calculated by 





'
'

),,(~ min a
a

yaxsearchya lcEl
n



la1 = 2

la2 = 1

la3 = 0 Si

<Φ(s3), <la1, la2 , la3>
s4 = <x, N,V, 

N> 

s4 = <x, 

N,V,V> 

s4= <x, 

N,V,ADJ> 

Running SEARN

Binary Classifier

Cost sensitive 

Examples STmax

WAP conversion

Learn classifier 

h

•Take set of cost sensitive examples

• Use Weighted All Pairs to reduce 

problem into binary classification

•Output learned classifier h, set as 

new policy
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Running SEARN

(second iteration)

s1 = <x,>

<0,1,0>

s2 = <x,N>

<1,0,0>

s5 = <x,N,N>

<1,0,0>

s8 = <x,N,N,N>

<0,0,1>

s9 = <x,N,N,V>

<0,1,0>

s10 = <x,N,N,ADJ>

<0,1,0>

s6 = <x,N,V>

<1,0,0>

s11 = <x,N,V,N>

<1,0,-1>

s12 = <x,N,V,V>

<1,1,-1>

s13 = <x,N,V,ADJ>

<0,0,1>

s7 = <x,N,ADJ>

<1,0,0>

s3 = <x,V>

<1,1,0>

s4 = <x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Case 1: 

-We go to s6 -> done

Case 2:

-We go to s5 -> add new 

cost sensitive example and 

retrain

- obtain w = <0,1,0>

MEMM vs. SEARN
 MEMM

- Expected Loss is much higher than it should be

-Weight vector is only trained on optimal paths

 SEARN

- Starts with same weight vector

- SEARN does additional training

- also goes through suboptimal paths

Computability of the Initial Policy
 Simple Problems under standard loss function => Good policy in constant time

 Sequence Labeling

 SEARN can learn under strictly more complex structures and loss functions than 
“other techniques”

 Comparison to M3N (apparently most powerful generic framework)

 Loss augmented minimization:

 (*)

 If  (*) is computable in time T(x); then the optimal policy is computable in time O(T(x)). 
Further, there exist problems for which the optimal policy is computable in constant time 
and for which (*) is an NP-hard computation
 Intuition: Keep increasing Markov Order

 Search Based Policies  

 No optimality requirement => Use search to create initial policy

 Instead of a good policy we now require efficient approximate search

Theoretical Analysis

 Away from initial policy, Toward a fully learned policy

 Each iteration degrades current policy

 Learned policy not much worse than

 Starting policy + average cost-sensitive loss + 
f(maximum cost sensitive loss)

Comparing Alternative Techniques

(arg max)

 Attempts to solve :

- Tractable only for certain structured problems

- Difficult ones boil down to NP-hard search problems

- Inspired the modeling of search in SEARN 

),|(max argˆ xyFy
xYy



Comparing Alternative Techniques

(perceptron style)

 Learn a weight vector by updating

- Essentially a search based structured prediction

- Cannot handle different loss functions

- Pro: Efficient, easy to implement

- Con: Cannot handle different loss functions

)ˆ,(),( nnnn yxyxww 
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Comparing Alternative Techniques

(global prediction)

 CRF, M3N

 Models are limited to linear chains with Markov features 

 SEARN can be used for more general model features with 
weaker assumptions

 Information is shared at test time (Viterbi), in SEARN it is 
shared at training.

 Adv: Large margin principle, tractible on more problems

 Con: slow. Limited to Hamming Loss

Comparing Alternative Techniques

(SVM-struct)

 Also need to compute loss-augmented search problem 

 Allows non decomposable loss functions

 Pro: More loss functions available, maximizes margin, Often 

maximum constraint cannot be found 

 Con: Intractable loss-augmented search procedure

Comparing Alternative Techniques

(MEMM)

 Uses “state given observation” probabilities

 Traces true output sequences, using true yn-1 labels to 

generate training examples

Comparing Alternative Techniques

(MEMM)

 SEARN is most similar to MEMM prediction setting

y1

MEMM:

SEARN:

y2 y3 y4 yn

a1 a2 a3 a4 an

-Predictions could 

be noisy

- Based only on 

optimal paths

-Predicts decisions

- improves loss on 

suboptimal paths 

Summary of Algorithms Relation to Reinforcement Learning

 Can map structured prediction to degenerate Reinforcement 

Learning problem

- actions <=> indexed predictions

- observation states: x at the beginning, then empty

- r = 0 except at the end, where r is loss function

 “training wheels” analogy



3/11/2010

8

Sequence Labeling Tests

 Simplest nontrivial structure

 Performed on 4 tasks:

- Handwriting Recognition

- Named Entity Recognition

- Syntactic Chunking

- Joint Chunking, POS tagging 

Experimental Results

Automatic Document Summarization

 Given a document collection and user query (topic), create a 

summary of the documents about the topic

 Typical approach is greedy sentence extraction

 Want short summaries with document compression

 SEARN uses vine-growth model

Vine Growth Model

 Models dependency structure

 If word w is added, all ancestors of w are also added

 Takes preference to shorter, grammatically correct sentences

Application to SEARN
 Search space and actions are the growth of the trees

 Incrementally grow summary by beginning a sentence or growing 

an existing one

 Frontier nodes – head of each sentence (red)

 Summary nodes – initialized to empty set (green)

S1 S2 S3

…

Sn

SEARN in practice
 Data – DUC 2005 data, 50 collections, 25 documents each, 

each collection has a topic

 Metric – “Rouge 2” metric, uses evenly weighted bigram 

overlaps between summaries 

 Initial Policy – use search to approximate total cost 

 Features – includes aspects of current summary set and input 

document

- e.gWord identity, stem, POS of w, location of s, length of 

document,…
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Experimental Results

 Oracle – system that returns summary given true output

 BAYESUM – achieved highest human scores in DUC 05

 Other structured prediction not listed- intractable

Discussion
 SEARN
 Solves complex structured prediction problem

 Minimal assumptions about structure and loss function

 Limitation
 Overfitting

 No optimal policy for noisy data

 Overall idea : proper local learning leads to good global performance

 Method for integrating search and learning

 SEARN : between global learning and local learning

Thank You

Questions


