Motivation • Complex Structured Prediction Problems Natural Language Processing Search-based Structured Prediction • Speech • Computational Biology Hal Daume III, John Langford, Daniel Marcu Vision Machine Learning Journal, 2009 • Current Algorithms Presented By : Sudip & Michael • Decomposition of loss function • Decomposition of feature functions

What SEARN can do?

- Structured Prediction Algorithm
- Not limited to bounded tree-width ??
- · Applicable to any loss function
- Can Handle Arbitrary Features
- · Can cope with imperfect data

Definition: Structured Prediction Problem

- **Definition:** A structured prediction problem D is a cost-sensitive classification problem where Y has structure: elements y_{i}^{2} decomposes into variable-length vectors (y_{1}, \dots, y_{T}) . D is a distribution over inputs x_{i}^{2} and cost vectors c_{i} , where |c| is a variable is 2^{n} .
- Example: Parsing Problem under F1-loss
 - x = input sequence

 - y = parse tree of x
 D = distribution over (x,c) where, c_y is the F1 loss of y on "true"
 - output
 |c| = number of trees with |x|-many leaves
- Goal : find
- Minimiz∉_lloxs→Y
- L(D,h) = Ecan be produced by predicting each component • SEARN : $y \in Y$

 $(y_1, y_2, ..., y_T)$

SEARN algorithm ingredients

Ingredients	Purpose
Search Space	Decomposing the prediction problem
Cost-sensitive Learning Algorithm	Return multiclass classifier h(s) given cost sensitive training data
Labeled Structured Prediction Training data	SEARN converts them into cost- sensitive training data
Loss function	Used to calculate "regret" for an action
Good Initial Policy	Starting point of iteration

Background

- Reinforcement Learning
- Cost Sensitive Training Data
- Multi-class Cost-sensitive Learner

Background Concepts

- Reinforcement Learning
 - set of states S
 - set of actions A
 - set of scalar rewards
- Find "policy" that maps states to actions such that performing the action results in maximum reward

Cost Sensitive Classification

- · Cost sensitive example each input sample is associated with costs
- Notation: (*x*,**c**)

where c =< c₁,..., c_k > and c_i is the cost of labeling x with class I
Thus we are looking for a function minimizing

$$h_D = E_{(x,c)\sim D} \{ c_{h(x)} \}$$

Error Rate of WAP

Theorem 2.3 (WAP error efficiency; (Beygelzimer et al., 2005)). For all costsensitive problems \mathcal{D} , if the base importance weighted classifier has loss rate c, then WAP has loss rate at most 2c.

• Error Rate of WAP is bounded by the error of the binary classifier

Complete SEARN Algorithm

18: end for 18: end for 19: return $h^{(last)}$ without π^*

Construction of Cost-sensitive

- Use policy h to construct cost-sensitive multiclass classification
- One path per structured training example
- · Single cost-sensitive example for each state on each path
- Use loss to compute "regret" Execute

MEMM vs. SEARN

• MEMM

- Expected Loss is much higher than it should be
- Weight vector is only trained on optimal paths

• SEARN

- Starts with same weight vector
- SEARN does additional training
- also goes through suboptimal paths

Theoretical Analysis

- Away from initial policy, Toward a fully learned policy
- Each iteration *degrades* current policy
- · Learned policy not much worse than
- Starting policy + average cost-sensitive loss + f(maximum cost sensitive loss)

Theorem 2 For all \mathcal{D} with $c_{max} = \mathbb{E}_{(x,c)\sim\mathcal{D}} \max y c_y$ (with (x,c) as in Def 1), for all learned cost sensitive classifiers h', SEARN with $\beta = 1/T^3$ and $2T^3 \ln T$ iterations, outputs a learned policy with loss bounded by:

 $L(\mathcal{D}, h_{last}) \le L(\mathcal{D}, \pi) + 2T\ell_{avg}\ln T + (1 + \ln T)c_{max}/T$

Comparing Alternative Techniques (arg max)

• Attempts to solve :

$$\hat{y} = \arg \max_{y \in Y_x} F(y \mid x, \theta)$$

- Tractable only for certain structured problems
- Difficult ones boil down to NP-hard search problems
- Inspired the modeling of search in SEARN

• Learn a weight vector by updating

$$w \leftarrow w + \Phi(x_n, y_n) - \Phi(x_n, \hat{y}_n)$$

- Essentially a search based structured prediction
- Cannot handle different loss functions
- Pro: Efficient, easy to implement
- Con: Cannot handle different loss functions

Comparing Alternative Techniques (global prediction)

- CRF, M³N
- Models are limited to linear chains with Markov features
- SEARN can be used for more general model features with weaker assumptions
- Information is shared at test time (Viterbi), in SEARN it is shared at training.
- Adv: Large margin principle, tractible on more problems
- Con: slow. Limited to Hamming Loss

Comparing Alternative Techniques (SVM-struct)

- Also need to compute loss-augmented search problem
- Allows non decomposable loss functions

 $S(x,y) = \arg \max_{\hat{y} \in \mathcal{Y}} \left[\boldsymbol{w}^{\top} \boldsymbol{\Phi}(x,\hat{y}) \right] l(\!| x,y,\hat{y})$

- Pro: More loss functions available, maximizes margin, Often maximum constraint cannot be found
- Con: Intractable loss-augmented search procedure

Comparing Alternative Techniques (MEMM)

• Uses "state given observation" probabilities

$$p(y_n \mid x, y_{n-1}; \boldsymbol{w}) = \frac{1}{Z_{x, y_{n-1}; \boldsymbol{w}}} \exp\left[\boldsymbol{w}^\top \Phi(x, y_n, y_{n-1})\right]$$
$$Z_{x, y_{n-1}; \boldsymbol{w}} = \sum_{y' \in \mathcal{Y}^n} \exp\left[\boldsymbol{w}^\top \Phi(x, y', y_{n-1})\right]$$

• Traces true output sequences, using true y_{n-1} labels to generate training examples

Sequence Labeling Tests

- Simplest nontrivial structure
- Performed on 4 tasks:
 - Handwriting Recognition
 - Named Entity Recognition
 - Syntactic Chunking
 - Joint Chunking, POS tagging

Experimental Results

Handwriting		NER		Chunk	C+T
Small	Large	Small	Large	1940 10100 1010	0.000
65.56	70.05	91.11	94.37	83.12	87.88
68.65	72.10	93.62	96.09	85.40	90.39
75.75	82.42	93.74	97.31	86.09	93.94
82.63	82.52	85.49	85.49	~	~
69.74	74.12	93.18	95.32	92.44	93.12
-	-	94.94	~	94.77	96.48
÷	-	94.90	~	-	-
81.00	~	-	-	1.000	-
87.00	~	-	-	-	-
70.17	76.88	95.01	97.67	94.36	96.81
73.81	79.28	95.90	98.17	94.47	96.95
82.12	90.58	95.91	98.11	94.44	96.98
87.55	90.91	89.31	90.01	~	~
	Handy Small 65.56 68.65 75.75 82.63 69.74 - - 81.00 87.00 70.17 73.81 82.12 87.55	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Automatic Document Summarization

- Given a document collection and user query (topic), create a summary of the documents about the topic
- Typical approach is greedy sentence extraction
- Want short summaries with document compression
- SEARN uses vine-growth model

Takes preference to shorter, grammatically correct sentences

SEARN in practice

- Data DUC 2005 data, 50 collections, 25 documents each, each collection has a topic
- Metric "Rouge 2" metric, uses evenly weighted bigram overlaps between summaries
- Initial Policy use search to approximate total cost
- Features includes aspects of current summary set and input document
- e.g Word identity, stem, POS of w, location of s, length of document, \ldots

Experiment	al Resu	ılts
OD LOT D	CONTRACT AND DO NOT	The ACTIVATION OF TAXA.

	ORACLE		SEARN		DAILSUM			
	Vine	Extr	Vine	Extr	D05	D03	Base	Best
100 w	.0729	.0362	.0415	.0345	.0340	.0316	.0181	-
250 w	.1351	.0809	.0824	.0767	.0762	.0698	.0403	.0725

• Oracle – system that returns summary given *true* output

• BAYESUM – achieved highest human scores in DUC 05

• Other structured prediction not listed- intractable

Thank You

Questions