
3/11/2010

1

Hal Daume III, John Langford, Daniel Marcu

Machine Learning Journal, 2009

Presented By : Sudip & Michael

Search-based Structured Prediction

Motivation

 Complex Structured Prediction Problems

 Natural Language Processing

 Speech

 Computational Biology

 Vision

 Current Algorithms

 Decomposition of loss function

 Decomposition of feature functions

What SEARN can do ?

 Structured Prediction Algorithm

 Not limited to bounded tree-width ??

 Applicable to any loss function

 Can Handle Arbitrary Features

 Can cope with imperfect data

SEARN - Overview

 Integrating SEARch and lEARNing

 Meta-algorithm

Complex Structured

Prediction Problem
Simple Classification

Problems
SEARN

Theoretical Guarantee

Definition: Structured Prediction

Problem
 Definition: A structured prediction problem D is a cost-sensitive classification problem where

Y has structure: elements y Y decomposes into variable-length vectors . D is a
distribution over inputs x X and cost vectors c, where |c| is a variable is 2T.

 Example: Parsing Problem under F1-loss
 x = input sequence

 y = parse tree of x

 D = distribution over (x,c) where, cy is the F1 loss of y on “true”
output

 |c| = number of trees with |x|-many leaves

 Goal : find

 Minimize loss

 SEARN : can be produced by predicting each component

1(,...,)Ty y

:h X Y

(,)~ ()(,) { }x c D h xL D h E c

y Y

1 2(, ,....,)Ty y y

SEARN algorithm ingredients

Ingredients Purpose

Search Space Decomposing the prediction problem

Cost-sensitive Learning Algorithm Return multiclass classifier h(s) given

cost sensitive training data

Labeled Structured Prediction Training

data

SEARN converts them into cost-

sensitive training data

Loss function Used to calculate “regret” for an action

Good Initial Policy Starting point of iteration

3/11/2010

2

Background

 Reinforcement Learning

 Cost Sensitive Training Data

 Multi-class Cost-sensitive Learner

Background Concepts
 Reinforcement Learning

 set of states S

 set of actions A

 set of scalar rewards

 Find “policy” that maps states to actions such that performing

the action results in maximum reward

Cost Sensitive Classification
 Cost sensitive example - each input sample is associated with costs

 Notation:

where and ci is the cost of labeling x with class I

 Thus we are looking for a function minimizing

),(cx

 kcc ,...,1c

}{)(~),(xhDxD cEh c

Reduction to Binary Classification

(Weighted All Pairs)

Lbl:A

Costs:CAA, CAB,

CAC

Lbl:B

Costs:CBA, CBB,

CBC

Lbl:C

Costs:CCA, CCB,

CCC

X1=

X2=

X3=

X3
’

=

<X1 ,A,B>

<X1 ,A,C>

<X1 ,B,C>

X1
’

=

X2
’

=

<X2 ,A,B>

<X2 ,A,C>

<X2 ,B,C>

X4
’

=

X5
’

=

X6
’

=

…

X3
’

=

Step 1: Create new training set, including all pairs of classes

Step 2:Learn binary classifier h(<x,i,j>) on new training

set

Each Weighted Pair contains information regarding which class is

better

Reduction to Binary Classification
 Step 3

- For a test example x, we say that class i is better than class j if

and or

and

 Step 4

- Calculate relation (i beats j) for all (i,j)

- Use as prediction:

ji 1),,(jixh

ji 0),,(jixh

|} beats |{|maxarg)(jijxh inew

Reduction to Binary Classification

(Complete Algorithm)

 Define

3/11/2010

3

Error Rate of WAP

• Error Rate of WAP is bounded by the error of the binary classifier

SEARN - Testing

1 1(,)s x y 2 1 2(, ,)s x y y 1 2(, , ,...,)
x xT Ts x y y y

0()h s 1()h s 2()h s 1()
xTh s

0s x

SEARN - Training

Multiclass
Classifier

[First Iteration -]

Cost-sensitive
Classification

Examples

(1)new oldh h

newh

Complete SEARN Algorithm

Feature Computations
 Compute feature vector on the basis of state

 Good choice of features => Good Prediction

 may depend on any aspect of input x and any past

decision

 Example : Part of speech tagging

 : zeros everywhere except for “interesting” aspects of

input (such as features corresponding to and)

 ts

()ts

()ts

1tx ty

Construction of Cost-sensitive

Examples

 Use policy h to construct cost-sensitive multiclass classification

examples

 One path per structured training example

 Single cost-sensitive example for each state on each path

 Use loss to compute “regret”

st

st+1

st+1

a

a’

sT

sT

Execute

policy

Execute

policy LOSS

KNOWN

FOR

THESE

STATES

ONLY

3/11/2010

4

Initial Policy
 Definition: For an input x and a cost vector c, and a state

in the search space, the initial policy π(s,c) is
.

 That is, π chooses the action (i.e., value for) that minimizes
the corresponding cost, assuming that all future decisions are
also made optimally.

 Requirements:

 “Good” (not necessarily optimal)

 Efficiently Computable

1 2(, ,.....,)ts x y y y

1 2 1,..., ,.....,arg min min
t t T Ty y y y yc

1ty

Running Example
 Part of Speech Tagging

 Single Training Point

x = “Thorsten is smart”

N V ADJ

Running MEMM

<x,>

<0,1,0>

<x,N>

<1,0,0>

<x,N,N>

<1,0,0>

<x,N,N,N>

<0,0,1>

<x,N,N,V>

<0,1,0>

<x,N,N,ADJ>

<0,1,0>

<x,N,V>

<1,0,0>

<x,N,V,N>

<1,0,-1>

<x,N,V,V>

<1,1,-1>

<x,N,V,ADJ>

<0,0,1>

<x,N,ADJ>

<1,0,0>

<x,V>

<1,1,0>

<x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

After Training

w = <0,0,-1>

Running MEMM

<x,>

<0,1,0>

<x,N>

<1,0,0>

<x,N,N>

<1,0,0>

<x,N,N,N>

<0,0,1>

<x,N,N,V>

<0,1,0>

<x,N,N,ADJ>

<0,1,0>

<x,N,V>

<1,0,0>

<x,N,V,N>

<1,0,-1>

<x,N,V,V>

<1,1,-1>

<x,N,V,ADJ>

<0,0,1>

<x,N,ADJ>

<1,0,0>

<x,V>

<1,1,0>

<x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Testing policy:

-Tie at second decision

-Suppose it chooses s2

w = <0,0,-1>

Running SEARN

(Initial Policy)

s1 = <x,>

<0,1,0>

s2 = <x,N>

<1,0,0>

s5 = <x,N,N>

<1,0,0>

s8 = <x,N,N,N>

<0,0,1>

s9 = <x,N,N,V>

<0,1,0>

s10 = <x,N,N,ADJ>

<0,1,0>

s6 = <x,N,V>

<1,0,0>

s11 = <x,N,V,N>

<1,0,-1>

s12 = <x,N,V,V>

<1,1,-1>

s13 = <x,N,V,ADJ>

<0,0,1>

s7 = <x,N,ADJ>

<1,0,0>

s3 = <x,V>

<1,1,0>

s4 = <x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Obtains same

weight vector as

MEMM

- w = <0,0,-1>

Running SEARN

Cost-sensitive Examples

s1 = <x,

N>

• For each component of the prediction, add a cost sensitive example

• Cost is calculated by

'

'
),,(~ min a

a
yaxsearchya lcEl

n

3/11/2010

5

Running SEARN

Cost-sensitive Examples

s1 = <x,

N>

• For each component of the prediction, add a cost sensitive example

to Si

• Cost is calculated by

s2 = <x, N,V>

'

'
),,(~ min a

a
yaxsearchya lcEl

n

s2 = <x, N,N>

s2 = <x, N,ADJ>

la1 = 1

la2 = 0

la3 = 1

Running SEARN

Cost-sensitive Examples

s1 = <x,

N>

• For each component of the prediction, add a cost sensitive example

to Si

• Cost is calculated by

s2 = <x, N,V>

'

'
),,(~ min a

a
yaxsearchya lcEl

n

s2 = <x, N,N>

s2 = <x, N,ADJ>

la1 = 1

la2 = 0

la3 = 1 Si

<Φ(s1), <la1, la2 , la3>

Running SEARN

Cost-sensitive Examples

s3 = <x,

N,V>

• For each component of the prediction, add a cost sensitive example

to Si

• Cost is calculated by

'
'

),,(~ min a
a

yaxsearchya lcEl
n

Running SEARN

Cost-sensitive Examples

s3 = <x,

N,V>

• For each component of the prediction, add a cost sensitive example

to Si

• Cost is calculated by

'
'

),,(~ min a
a

yaxsearchya lcEl
n

la1 = 2

la2 = 1

la3 = 0

s4 = <x, N,V,

N>

s4 = <x,

N,V,V>

s4= <x,

N,V,ADJ>

Running SEARN

Cost-sensitive Examples

s3 = <x,

N,V>

• For each component of the prediction, add a cost sensitive example

to Si

• Cost is calculated by

'
'

),,(~ min a
a

yaxsearchya lcEl
n

la1 = 2

la2 = 1

la3 = 0 Si

<Φ(s3), <la1, la2 , la3>
s4 = <x, N,V,

N>

s4 = <x,

N,V,V>

s4= <x,

N,V,ADJ>

Running SEARN

Binary Classifier

Cost sensitive

Examples STmax

WAP conversion

Learn classifier

h

•Take set of cost sensitive examples

• Use Weighted All Pairs to reduce

problem into binary classification

•Output learned classifier h, set as

new policy

3/11/2010

6

Running SEARN

(second iteration)

s1 = <x,>

<0,1,0>

s2 = <x,N>

<1,0,0>

s5 = <x,N,N>

<1,0,0>

s8 = <x,N,N,N>

<0,0,1>

s9 = <x,N,N,V>

<0,1,0>

s10 = <x,N,N,ADJ>

<0,1,0>

s6 = <x,N,V>

<1,0,0>

s11 = <x,N,V,N>

<1,0,-1>

s12 = <x,N,V,V>

<1,1,-1>

s13 = <x,N,V,ADJ>

<0,0,1>

s7 = <x,N,ADJ>

<1,0,0>

s3 = <x,V>

<1,1,0>

s4 = <x,ADJ>

<1,0,-1>

L = 2

L = 2

L = 1

L = 1

L = 1

L = 0

Case 1:

-We go to s6 -> done

Case 2:

-We go to s5 -> add new

cost sensitive example and

retrain

- obtain w = <0,1,0>

MEMM vs. SEARN
 MEMM

- Expected Loss is much higher than it should be

-Weight vector is only trained on optimal paths

 SEARN

- Starts with same weight vector

- SEARN does additional training

- also goes through suboptimal paths

Computability of the Initial Policy
 Simple Problems under standard loss function => Good policy in constant time

 Sequence Labeling

 SEARN can learn under strictly more complex structures and loss functions than
“other techniques”

 Comparison to M3N (apparently most powerful generic framework)

 Loss augmented minimization:

 (*)

 If (*) is computable in time T(x); then the optimal policy is computable in time O(T(x)).
Further, there exist problems for which the optimal policy is computable in constant time
and for which (*) is an NP-hard computation
 Intuition: Keep increasing Markov Order

 Search Based Policies

 No optimality requirement => Use search to create initial policy

 Instead of a good policy we now require efficient approximate search

Theoretical Analysis

 Away from initial policy, Toward a fully learned policy

 Each iteration degrades current policy

 Learned policy not much worse than

 Starting policy + average cost-sensitive loss +
f(maximum cost sensitive loss)

Comparing Alternative Techniques

(arg max)

 Attempts to solve :

- Tractable only for certain structured problems

- Difficult ones boil down to NP-hard search problems

- Inspired the modeling of search in SEARN

),|(max argˆ xyFy
xYy

Comparing Alternative Techniques

(perceptron style)

 Learn a weight vector by updating

- Essentially a search based structured prediction

- Cannot handle different loss functions

- Pro: Efficient, easy to implement

- Con: Cannot handle different loss functions

)ˆ,(),(nnnn yxyxww

3/11/2010

7

Comparing Alternative Techniques

(global prediction)

 CRF, M3N

 Models are limited to linear chains with Markov features

 SEARN can be used for more general model features with
weaker assumptions

 Information is shared at test time (Viterbi), in SEARN it is
shared at training.

 Adv: Large margin principle, tractible on more problems

 Con: slow. Limited to Hamming Loss

Comparing Alternative Techniques

(SVM-struct)

 Also need to compute loss-augmented search problem

 Allows non decomposable loss functions

 Pro: More loss functions available, maximizes margin, Often

maximum constraint cannot be found

 Con: Intractable loss-augmented search procedure

Comparing Alternative Techniques

(MEMM)

 Uses “state given observation” probabilities

 Traces true output sequences, using true yn-1 labels to

generate training examples

Comparing Alternative Techniques

(MEMM)

 SEARN is most similar to MEMM prediction setting

y1

MEMM:

SEARN:

y2 y3 y4 yn

a1 a2 a3 a4 an

-Predictions could

be noisy

- Based only on

optimal paths

-Predicts decisions

- improves loss on

suboptimal paths

Summary of Algorithms Relation to Reinforcement Learning

 Can map structured prediction to degenerate Reinforcement

Learning problem

- actions <=> indexed predictions

- observation states: x at the beginning, then empty

- r = 0 except at the end, where r is loss function

 “training wheels” analogy

3/11/2010

8

Sequence Labeling Tests

 Simplest nontrivial structure

 Performed on 4 tasks:

- Handwriting Recognition

- Named Entity Recognition

- Syntactic Chunking

- Joint Chunking, POS tagging

Experimental Results

Automatic Document Summarization

 Given a document collection and user query (topic), create a

summary of the documents about the topic

 Typical approach is greedy sentence extraction

 Want short summaries with document compression

 SEARN uses vine-growth model

Vine Growth Model

 Models dependency structure

 If word w is added, all ancestors of w are also added

 Takes preference to shorter, grammatically correct sentences

Application to SEARN
 Search space and actions are the growth of the trees

 Incrementally grow summary by beginning a sentence or growing

an existing one

 Frontier nodes – head of each sentence (red)

 Summary nodes – initialized to empty set (green)

S1 S2 S3

…

Sn

SEARN in practice
 Data – DUC 2005 data, 50 collections, 25 documents each,

each collection has a topic

 Metric – “Rouge 2” metric, uses evenly weighted bigram

overlaps between summaries

 Initial Policy – use search to approximate total cost

 Features – includes aspects of current summary set and input

document

- e.gWord identity, stem, POS of w, location of s, length of

document,…

3/11/2010

9

Experimental Results

 Oracle – system that returns summary given true output

 BAYESUM – achieved highest human scores in DUC 05

 Other structured prediction not listed- intractable

Discussion
 SEARN
 Solves complex structured prediction problem

 Minimal assumptions about structure and loss function

 Limitation
 Overfitting

 No optimal policy for noisy data

 Overall idea : proper local learning leads to good global performance

 Method for integrating search and learning

 SEARN : between global learning and local learning

Thank You

Questions

