Search-based Structured Prediction

Hal Daume 11, John Langford, Danicl Marcu

Machine Learning Journal, 2009

Presented By : Sudip & Michael

Motivation

* Complex Structured Prediction Problems
» Natural Language Processing
» Speech
» Computational Biology
« Vision

o Current Algorithms
» Decomposition of loss function
» Decomposition of feature functions

What SEARN can do ?

e Structured Prediction Algorithm

« Not limited to bounded tree-width ??
» Applicable to any loss function

» Can Handle Arbitrary Features

» Can cope with imperfect data

SEARN - Overview

« Integrating SEARch and IEARNing
* Meta-algorithm

lex Structured Simple CI

Problen

Definition: Structured Prediction
Problem

« Definition: A structured prediction problem D is a cost-sensitive classification problem where
Y has structure: elements y .Y decomposes into variable-length veglorsg ey Yy)-Disa
distribution over inputs x _X and cost vectors ¢, where |c| is a variable: ¥'. T

Example: Parsing Problem under F1-loss

¢ X = input sequence

e y = parse tree of x

« D = distribution over (x,c) where, c, is the F1 loss of y on “true”
output

* |c| = number of trees with |x|-many leaves

¢ Goal:find
* Minimizé)logs— Y
e SEARN : carlfg%' B?o:dﬁﬁ‘éh"cg?wgdicting each component
yeY
(Y11 Yareees Y1)

SEARN algorithm ingredients

Search Space Decomposing the prediction problem

Cost-sensitive Learning Algorithm ~ Return multiclass classifier h(s) given
cost sensitive training data

Labeled Structured Prediction Training SEARN converts them into cost-
data sensitive training data
Loss function Used to calculate “regret” for an action
Good Initial Policy Starting point of iteration

3/11/2010

3/11/2010

Background Background Concepts

® Reinforcement Learning
 Reinforcement Learning ® set of states S

e Cost Sensitive Training Data ® st of actions A

* Multi-class Cost-sensitive Learner

® set of scalar rewards

* Find “policy” that maps states to actions such that performing
the action results in maximum reward

Reduction to Binary Classification

Cost Sensitive Classification (Weighted All Pairs)

Step 1: Create new training set, including all pairs of classes

e Cost sensitive example - each input sample is associated with costs

* Notation: (X, C)

where €C=<C;,...,C; > and ¢; s the cost of labeling x with class T

® Thus we are looking for a function minimizing

hD = E(x,c)~D{Ch(x)}

Each Weighted Pair contains information regarding which class is
better

Step 2:Learn binary classifier h(<x,i,j>) on new training

/ \ set /

Reduction to Binary Classification

Reduction to Binary Classification (Complete Algorithm)
e Step 3 ® Define
- For a test example x, we say that class i is better than class j if ks
i< jand h(<x,i, j>)=1 or Lty = i | kj = t}| w :fo 1/L(t)dt.
1> Jand h(<x,i, j>)=0
- Step4 e e o T WAT ot clair e
- Calculate relation (i beats j) for all (i,j) '1'”'”1’“ for ﬂllgl\};;:::‘fi,',,j_'d."‘,il}:]1 Si<jsrdo

end for

- Use as prediction: examples (z,k1, ..., k) in § do

iy
- - Add an importance weighted example
h..,(X) =argmax; [{]j|i beats j}| (503, 0 < B, o) to
new 1 end for
end for
Return h = B(S').

/ - /

Error Rate of WAP

Theorem 2.3 (WAP error efficiency: (Beygelzimer et al., 2005)). For all cost-
sensitive problems D, if the base importance weighted classifier has loss rate ¢, then WAP
has loss rate at most 2c.

* Error Rate of WAP is bounded by the error of the binary classifier

SEARN - Training

Examples

Feature Computations

® Compute feature vector @ on the basis of state s,

® Good choice of features => Good Prediction

® d(s,) may depend on any aspect of input x and any past
decision

® Example : Part of speech tagging

® d(s) :zeros everywhere except for “interesting” aspects of
input (such as features corresponding to x,, and ¥,)

3/11/2010

SEARN - Testing

n(s) n(s)) LC)
- - ———

Complete SEARN Algorithm

Algorithm SEarN(SSF, 7°, Learn)

1 Initialize policy A(©) — 7+

2 for IT=1... do

3 Initialize the set of cost-sensitive examples Sr — 0
4 forn=1...N de

5 Compute path under the current policy {si, ..., sp,) — pth(z,, KT)
[fort=1...7, do

7 Compute features & = &(xr,, s,) for input z,, and state s,

s Initialize a cost veetor e = ()

9 for each possible action a do

10: Compute the cost of a: (o = (A5, (Bq (3.2))

11 Append £ to c: e — ed i,

12 end for

13: Add cost-sensitive example (B, ¢) to Sy

14 end for

15 end for

16: Learn a classifier on Sp: W — Learn(S)
17 Interpolate: A7 — BR 4 (1 = AR

15: end for

19: return i

() without 7*

Construction of Cost-sensitive
Examples

« Use policy h to construct cost-sensitive multiclass classification
examples

» One path per structured training example

« Single cost-sensitive example for each state on each path

e Use loss to compute “regret” Exceute

olicy LOSS
KNOWN

FOR

Execute

. TH
polic:
o O

Iule, s.a) =By oan)Cy— nau;n]Eg.N(s.ﬂ,‘h)c,;.

3/11/2010

Initial Policy Running Example

» Definition: For an input x and a cost vector c, and a state ® Part of Speech Tagging
S=XX(Yy, Yoo i) in the search space, the initial policy n(s,c) is o Single Training Point

arg I’T'Ilrly‘+1 min c

Yerz oY1 "<V Y1 >

x = “Thorsten is smart”

¢ That is, 7 chooses the action (i.e., value f)pr) that minimizes
the corresponding cost, assuming that all fUture decisions are
also made optimally.

Requirements:
* “Good” (not necessarily optimal)
« Efficiently Computable

e ™ -~ N
Running MEMM Running MEMM

Testing policy:

After Training ~Tie at second decision
w = <0,0,-1> -Suppose it chooses s,

w=<0,0,-1>

(~ Running SEARN ~ - _ -
(Initial Policy) Running SEARN

Cost-sensitive Examples
Obtains same

weight vector as ® For cach component of the prediction, add a cost sensitive example
MEMM

-w = <0,0,-1>

* Cost is calculated by

I: = Ey~search(x,,,7r,a)cy - nll.n I:
o o /

3/11/2010

Running SEARN
Cost-sensitive Examples
® For cach component of the prediction, add a cost sensitive example

to S,
* Cost is calculated by

I7=E

y~search(x, ,n,a)cy

—minl”
a' a’

Running SEARN
Cost-sensitive Examples

® For each component of the prediction, add a cost sensitive example
to S
* Cost is calculated by

17 =E

y~search(x, ,n,a)cy

—minl”
a' a’

s, = <x, N,ADJ> =1

Running SEARN
Cost-sensitive Examples

® For each component of the prediction, add a cost sensitive example
to S;
* Cost is calculated by
T _ _minl”*
Ia - Ey~search(x",7r,a)cy rnal.n Ia'

Running SEARN
Cost-sensitive Examples

® For each component of the prediction, add a cost sensitive example
to S;
* Cost is calculated by

17 =E

y~search(x",7r,a)cy

—minl”
a' a

Running SEARN
Cost-sensitive Examples

® For each component of the prcdiction, add a cost sensitive cxamplc
to S
* Cost is calculated by

I7=E

—minl”
a' a’

y~search(x, ,n,a)cy

Running SEARN
Binary Classifier

*Take set of cost sensitive examples

* Use Weighted All Pairs to reduce
problem into binary classification

*Output learned classifier h, set as

new policy

/~ Running SEARN
(second iteration)

ase |
-We go to s, -> done
Case 2:

-We go to s; -> add new
cost sensitive example and
retrain

- obtain w = <0,1,0>

-

Computability of the Initial Policy

+ Simple Problems under standard loss function => Good policy in constant time
* Sequence Labeling

SEARN can learn under strictly more complex structures and loss functions than
“other techniques™

« Comparison to M3N (apparently most powerful generic framework)

o Loss augmented minimization:

*)

opt(Ve. . w) = arg max | e,) — 1y, i)
gev

o If (*) is computable in time T(x); then the optimal policy is computable in time O(T(x)).
Further, there exist problems for which the optimal policy is computable in constant time
and for which (*) is an NP-hard computation

Intuition: Keep increasing Markov Order

Search Based Policies
« No optimality requirement => Use search to create initial policy
 Instead of a good policy we now require efficient approximate search

Comparing Alternative Techniques
(arg max)

® Attempts to solve :

9 = arg max F (| x.6)
yevry

- Tractable only for certain structured problems
- Difficult ones boil down to NP-hard search problems
- Inspired the modeling of search in SEARN

3/11/2010

MEMM vs. SEARN

* MEMM
- Expected Loss is much higher than it should be
- Weight vector is only trained on optimal paths

SEARN

- Starts with same weight vector

- SEARN does additional training

- also goes through suboptimal paths

Theoretical Analysis

« Away from initial policy, Toward a fully learned policy
« Each iteration degrades current policy
« Learned policy not much worse than

« Starting policy + average cost-sensitive loss +
f(maximum cost sensitive loss)

Theorem 2 For all D with cmaz = E(rc)~pmaxycy (with (x.¢) as in
Def 1). for all learned cost sensitive classifiers h', SEARN with 3 = 1/T°
and 273 InT iterations, outputs a learned policy with loss bounded by:

L(D, hiast) < L(D,7) + 2T ag InT + (1 + In T)emaz/T

Comparing Alternative Techniques
(perceptron style)

® Learn a weight vector by updating
We——W+ q)(xn ' yn) - q)(xn) yn)

- Essentially a search based structured prediction
- Cannot handle different loss functions
- Pro: Efficient, easy to implement

Con: Cannot handle different loss functions

Comparing Alternative Techniques
(global prediction)

o CRE, M’N
® Models are limited to linear chains with Markov features

® SEARN can be used for more general model features with
weaker assumptions

® Information is shared at test time (Viterbi), in SEARN it is
shared at training,

® Adv: Large margin principle, tractible on more problems

 Con: slow. Limited to Hamming Loss

3/11/2010

Comparing Alternative Techniques
(SVM-struct)

© Also need to compute loss—augmcntcd search prnblcm

¢ Allows non decomposable loss functions

S(x,y) = argmax [wT(D(.r. e, y.9)
yey

® Pro: More loss functions available, maximizes margin, Often

maximum constraint cannot be found

 Con: Intractable loss-augmented search procedure

Comparing Alternative Techniques
(MEMM)

® Uses “state given observation” probabilities

1
P | 2 g3 w) = ————exp [T ® (2. Y. yu1)]

T, Yn—1;W

Zl‘:yn—ﬁ‘w = Z exXp [wT"I‘(I !ﬂ'l‘ yn—l)]
yeyn

® Traces true output sequences, using true y, ; labels to
generate training examples

MEMM:

SEARN:

Comparing Alternative Techniques
(MEMM)

® SEARN is most similar to MEMM prediction setting

-Predictions could
be noisy

- Based only on
optimal paths

-Predicts decisions
- improves loss on
suboptimal paths

Summary of Algorithms

Loss Features | Efficient | Easy to
g Implement
=
b
- =z
= =
Structured Perceptron v vV v vV
Conditional Random Field v v
Max-margin Markov Network | / v Y
SVM for Structured Ontputs | / V
Reranking VB 7

Relation to Reinforcement Learning

¢ Can map structured prediction to degenerate Reinforcement
Learning problem
- actions <=> indexed predictions
- observation states: x at the beginning, then empty

-1 = 0 except at the end, where r is loss function

® “training wheels” analogy

Sequence Labeling Tests

e Simplest nontrivial structure

® Performed on 4 tasks:
- Handwriting Recognition
- Named Entity Recognition
- Syntactic Chunking
- Joint Chunking, POS tagging

Automatic Document Summarization

® Given a document collection and user query (topic), create a
summary of the documents about the topic

® Typical approach is greedy sentence extraction

® Want short summaries with document compression

® SEARN uses vine-growth model

Application to SEARN

® Search space and actions are the growth of the trees

® Incrementally grow summary by beginning a sentence or growing
an existing one

® Frontier nodes — head of each sentence (red)

© Summary nodes — initialized to empty set (green)

LA ..O

®e0 ./’ ,O O/’

3/11/2010

Experimental Results

ALGORITHM

NER Chunk | C+T
Small Large | Small Large

Handwriting

CLASSIFICATION
Perceptron 65.56
Log Reg 68.65
SVM-Lin
SVM-Quad 82.63

STRUCTURED
Str. Pere. 69.74 7412 | 9318 9532 | 9244 | 93.12
CRF - - 94.94 ~ 94.77 | 96.48
SVt Es
M*N-Lin 81.00 ~
M*N-Quad 87.00 ~ = = = A

SEARN
Perceptron 70.17
Log Reg 73.81 95.90 ;
SVM-Lin 82.12 95.91 98.11
SVM-Quad 87.55 90.91 | 89.31 90.01

95.01

Vine Growth Model

.

“the man ate " “the man ate a sandwich , "

¢ Models dependency structure

© If word w is added, all ancestors of w are also added

® Takes preference to shorter, grammatically correct sentences

SEARN in practice

Data — DUC 2005 data, 50 collections, 25 documents each,
each collection has a topic

Metric — “Rouge 2” metric, uses evenly weighted bigram

overlaps between summaries

Initial Policy — use search to approximate total cost

Features — includes aspects of current summary set and input
document
- e.g Word identity, stem, POS of w, location of s, length of

document,...

Experimental Results

3/11/2010

ORACLE SEARN BAYESUM

Vine | Extr | Vine | Extr D05 DO3 Base | Best
100 w || .0729 | .0362 || .0415 | .0345 || .0340 | .0316 || .0181 -
250 w || .1351 | .0809 | .0824 | .0767 | .0762 | .0698 || .0403 | .0725

e Oracle — system that returns summary given true output
® BAYESUM — achieved highest human scores in DUC 05

¢ Other structured prediction not listed- intractable

Discussion

¢ SEARN
® Solves complex structured prediction problem

© Minimal assumptions about structure and loss function
® Limitation
® Overfitting
® No optimal policy for noisy data
¢ Overall idea : proper local learning leads to good global performance

® Method for integrating search and learning

© SEARN : between global learning and local learning

Thank You

Questions

