

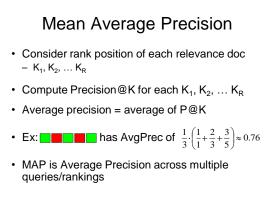
Learning to Rank

- Design a retrieval function f(x) = w^Tx

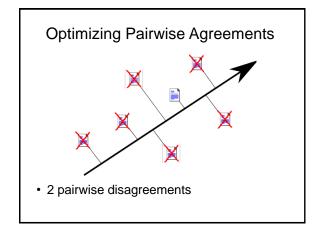
 (weighted average of features)
- For each query q
 - Score all $s_{q,d} = w^T x_{q,d}$
 - Sort by $\boldsymbol{s}_{\boldsymbol{q},\boldsymbol{d}}$ to produce ranking
- · Which weight vector w is best?

Outline

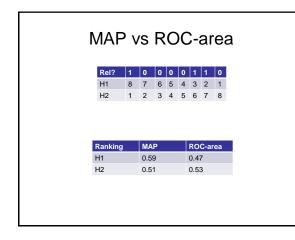
- · Optimizing ranking measures
 - "Learning to Rank"
 - Structured loss function
 - Mean average precision
- · Diversified retrieval
 - Coverage problem
 - Structured prediction problem



Rel?	1	0	0	0	0	1	1	1	1	0	0
H1	11	10	9	8	7	6	5	4	3	2	1
H2	1	2	3		5	6	7	8	9	10	11
	Rank	ing		MA	۱P			Be	st Ao	c	
	Rank H1	ing		MA 0.5				Be:		c	



Pairwise Preferences SVM
$$arg \min_{w,\xi} \frac{1}{2}w^2 + \frac{C}{N}\sum_{i,j}\xi_{i,j}$$
Such that: $w^Tx_i - w^Tx_j \ge 1 - \xi_{i,j}, \quad \forall i, j : y_i > y_j$ $\xi_{i,j} \ge 0, \quad \forall i, j$ Large Margin Ordinal Regression [Herbrich et al., 1999]Can be reduced to $O(n \log n)$ time [Joachims, 2005]Pairs can be reweighted to more closely model IR goals [Cao et al., 2006]



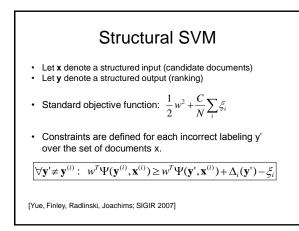
Linear Discriminant for Ranking

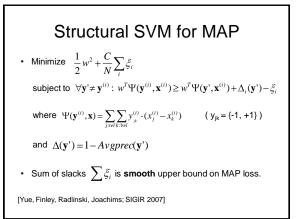
- Let $\mathbf{x} = (x_1, \dots x_n)$ denote candidate documents (features)
- Let $y_{jk} = \{+1, -1\}$ encode pairwise rank orders
- · Feature map is linear combination of documents.

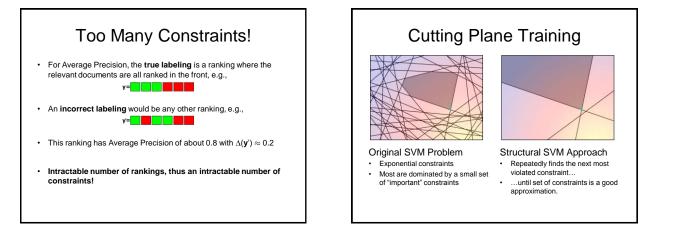
$$\Psi(\mathbf{y}, \mathbf{x}) = \sum_{j:rel} \sum_{k:rel} y_{jk} \cdot (x_j - x_k)$$

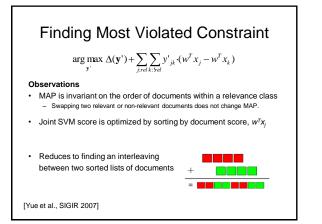
• Prediction made by sorting on document scores w^Tx_i

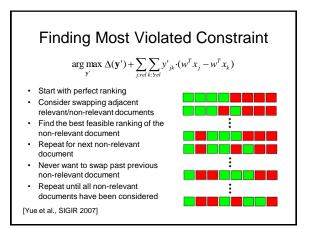
$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{arg\,max}} w^T \Psi(\mathbf{y}, \mathbf{x})$$

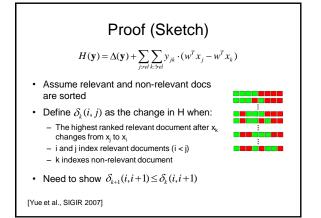


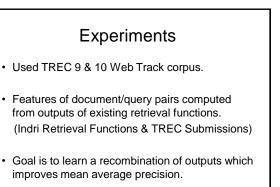


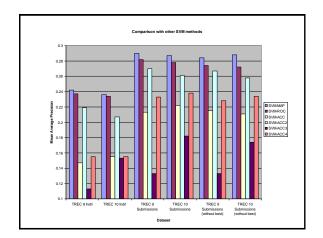






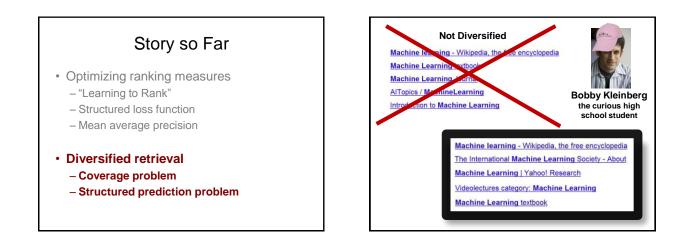


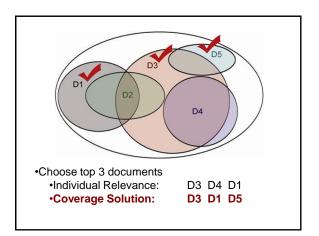


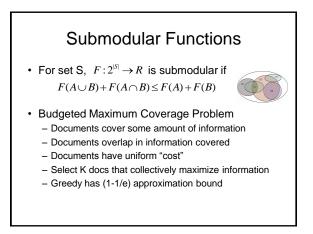


Finding Most Violated Constraint Required for structural SVM training Depends on structure of loss function Depends on structure of the feature map

- Efficient algorithms exist despite intractable number of constraints.
- · More than one approach
 - [Yue et al., 2007]
 - [Chapelle et al., 2007]







Diversity as Coverage Problem

- Given a good representation of information
 Retrieve documents to maximize coverage
- Learning approach to automatically learn coverage representation
 - Used to make predictions on new test examples
 - Structural SVMs

How to Represent Information?

- All the words
 (title words, anchor text, etc)
- Cluster memberships

 (topic models / dim reduction)
- Taxonomy memberships (ODP)

Weighted Word Coverage

- More distinct words = more information
- · Weight word importance
- **Goal:** select K documents which collectively cover as many distinct (weighted) words as possible
 - Greedy algorithm
 - (1-1/e) approximation bound (submodular)
 - Need good weighting function (learning problem).

[Yue & Joachims, ICML 2008]

				Exa	amp	le	
	Do	cument	Word	Counts			[
	V1	V2	V3	V4	V5		
D1			Х	Х	Х		
D2		Х		Х	Х	1	
D3	X	Х	Х	Х		1	

Word	Benefit
V1	1
V2	2
V3	3
V4	4
V5	5

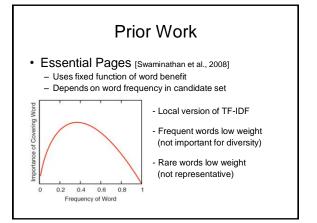
Marginal Benefit

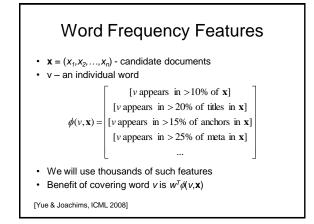
		•		
	D1	D2	D3	Best
Iter 1	12	11	10	D1
Iter 2		2	3	D3

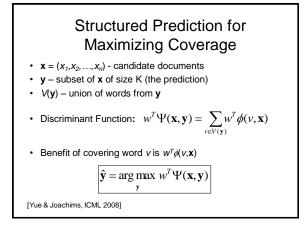
How to Weight Words?

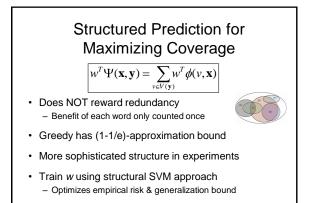
- Not all words created equal

 "the"
- · Conditional on the query
 - "computer" is normally fairly informative...
 - ...but not for the query "ACM"
- Weighting function based on the candidate set – (for a query)

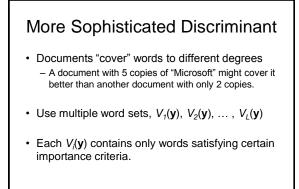




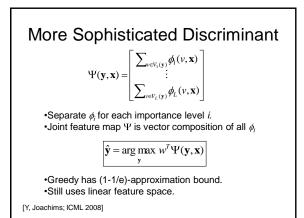




[Yue & Joachims, ICML 2008]



[Y, Joachims; ICML 2008]





Weighted Subtopic Loss

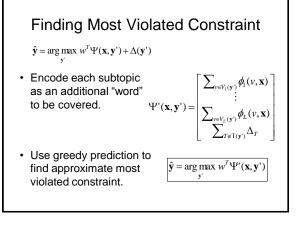
- x₁ covers t₁

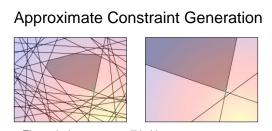
- x₂ covers t₁,t₂,t₃
- $-x_3$ covers t_1, t_3

	# Docs	Loss
t ₁	3	1/2
t ₂	1	1/6
t ₃	2	1/3

- Motivation
 - Higher penalty for not covering popular subtopics
 - Mitigates label noise in the tail

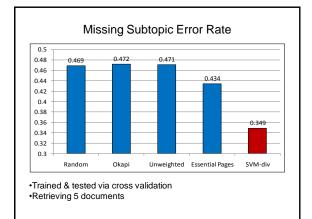
[Yue & Joachims, ICML 2008]





- Theoretical guarantees still hold.
 - Constant factor approximation to finding optimal cutting plane
 (1-1/e) approximation for solving coverage problems
- · Performs well in practice.

- Nanorobots
- Space mission robots
- Underwater robots
- Manual partitioning of the total information regarding a query



- · Learn automatic representation
 - Does not require gold standard labels
 - Maximize coverage on new problem instances
- "Inverse" of prediction problem
 - Given gold standard, can predict a good covering
 - Learn automatic representation that agrees with gold standard solution