Discriminative Unsupervised Learning of Structured Predictors

Linli Xu, Dana Wilkinson, Finnegan Southey, Dale Schuurmans

Presented by Kent Sutherland & Mark Verheggen

March 2, 2010

Outline

- Unsupervised Hidden Markov Models
- Unsupervised max-margin training
- Unsupervised M3N training
- Approximations

Hidden Markov Models

- Set of states, initial state, and transitions
- Generative model
- Models joint probability
- Easy to train given complete training data

Unsupervised Training

• Typically use EM when there are no labels

• But:

- Not guaranteed to find a global solution
- Can't be used in a discriminative approach

Unsupervised SVM

- Optimize the standard SVM objective over all class labelings
- For two classes:
 - $\min_{\mathbf{w},\mathbf{y}} \frac{1}{2} \|\mathbf{w}\|^2 + \sum_i [1 y_i \phi(x_i)^T \mathbf{w}]_+$
- This approach has (at least) three issues.

Issue 1: Degenerate Solutions

- All points might be assigned to a single class
- Correction: add a class-balance constraint
- Forces a roughly equal proportion of labels
- For two classes:
 - $-\epsilon \leq \mathbf{y}^T \mathbf{e} \leq \epsilon$

Issue 2: NP-Hard Problem

- $\bullet\,$ There are exponentially many possible ${\bf y}.$
- But, look at the dual SVM objective:
 - $\max_{0 \le \lambda \le 1} \lambda^T \mathbf{e} \frac{1}{2\beta} \langle K \circ \lambda \lambda^T, \mathbf{y} \mathbf{y}^T \rangle$
- \boldsymbol{y} only occurs in the term $\boldsymbol{y}\boldsymbol{y}^{\mathcal{T}}.$

NP-Hard (continued)

- Let $M := yy^T$. Then $M_{ij} = y_i y_j \in \{-1, 1\}$.
- That is, M_{ij} indicates whether $y_i = y_j$.

• Iff *M* is an equivalence relation, the following hold:

• diag(M) = \mathbf{e} ($y_i = y_i$) • $M = M^T$ ($y_i = y_j \iff y_j = y_i$) • $M \succeq 0$ ($y_i = y_j, y_j = y_k \Longrightarrow y_i = y_k$)

NP-Hard (continued)

- Optimize over *M* instead of **y**
- Relax the integer constraints on M so that $M_{ij} \in [-1,1]$
- Add the constraints $M \succeq 0$, $\operatorname{diag}(M) = \mathbf{e}$
- Result:
- $\min_{\boldsymbol{M} \succeq 0, \mathrm{diag}(\mathbf{M}) = \mathbf{e}} \left(\max_{0 \leq \lambda \leq 1} \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{e} \frac{1}{2\beta} \left\langle \boldsymbol{K} \circ \boldsymbol{\lambda} \boldsymbol{\lambda}^{\mathsf{T}}, \boldsymbol{M} \right\rangle \right)$

NP-Hard

• Re-written as a semidefinte program:

$$\begin{split} & \underset{\substack{M,\delta,\mu\geq 0,\nu\geq 0}{\text{d},\mu\geq 0,\nu\geq 0} \delta \quad \text{subject to} \\ & \left[\begin{array}{c} M \circ K & \mathbf{e} + \mu - \nu \\ (\mathbf{e} + \mu - \nu)^T & \frac{2}{\beta} (\delta - \nu^T \mathbf{e}) \end{array} \right] \succeq \mathbf{0} \\ & \text{diag}(M) = \mathbf{e}, \ M \succeq \mathbf{0}, \ -\epsilon \mathbf{e} \leq M \mathbf{e} \leq \epsilon \mathbf{e} \end{split}$$

Formulation for Max-Margin Markov Networks

- The same idea, but applied to M3N. Messier.
- Key differences:
 - Class labels y replaced with indicator matrices.
 - Two sets of labels (states, transitions)

Initial Experiment

Proof of concept

• 4 toy datasets, 2 simplified datasets

• New model significantly outperforms EM

DATA SET	CDHMM	EM
syth. data1 (95%)	3.38 ± 0.75	15.09 ± 1.92
syth. data2 (90%)	8.12 ± 1.57	17.49 ± 1.81
syth. data3 (80%)	22.12 ± 1.40	30.06 ± 1.24
syth. data4 (70%)	31.50 ± 1.46	39.90 ± 0.86
PROTEIN DATA1	51.75 ± 1.80	58.11 ± 0.47
PROTEIN DATA2	50.38 ± 2.04	57.23 ± 0.39

Approximations

- Semidefinite programming is too slow
- Reformulate problem
- Alternate between optimizing ${\it M}$ and λ,ξ
- Still uses a semidefinite program to find M:
- $\min_{M} \min_{0 \le \lambda \le 1, \xi \ge 0} \omega(M; \lambda, \xi) = \lambda^{T} (K \circ M) \lambda / 2\beta + \xi^{T} \mathbf{e}$

subject to convex constraints

Approximation (continued)

• Iteratively retrain using the SVM:

- Initialize labeling
- Traing SVM
- Label data with new discriminant
- Retrain SVM using relabeled data

Approximation Results	Questions?
Intuitively similar approach to EM	
Approximation scales to larger datasets	
Still outperforms EM	
$\begin{array}{c ccccc} Table 3. \mbox{ Prediction error for larger data sets.} \\ \hline Data set & ACDHMM & EM \\ \hline 20\times 2 \mbox{ secq} & 43.12 \pm 2.20 & 46.27 \pm 1.51 \\ 10\times 5 \mbox{ secq} & 44.33 \pm 2.30 & 48.67 \pm 1.81 \\ 5 \times 10 \mbox{ secq} & 46.44 \pm 2.12 & 48.67 \pm 1.82 \\ \hline \end{array}$	