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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Experimental Results
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HIDDEN MORKOV MODEL (HMM)
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 A hidden Markov model (HMM)

is a triple (    ,A,B)

 States: 

 Output symbols: 

 Initial State Probabilities

 Specifies where the sequence starts

 State Transition Probabilities

 Probability that one state succeeds another

 Symbol Emission Probabilities

 Probability that observation is generated in this state

 Every output + state sequence has a probability
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 Maximum Entropy: 
Incorporate multiple 

overlapping features

 Indentation

 Numbered questions

 Styles of paragraph 

breaks

 Line length

 HMM: Conditional 

probability of state 

sequences given 

observations DET N

bear

The bear chased the cat

DET  N      V     DET  N

<question>

<question>

<question>

<answer>

<answer>

<answer>

EXPERIMENT SETUP
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 38 les belonging to 7 Usenet multipart FAQs

 <head>X-NNTP-Poster: NewsHound v1.33

 <head>

 <head>Archive-name: acorn/faq/part2

 <head>Frequency: monthly

 <head>

 <question>2.6) What configuration of serial cable 
should I use

 <answer>

 <answer> Here follows a diagram of the necessary 
connections

 <answer>programs to work properly. They are as far 
as I know t

 <answer>agreed upon by commercial comms software 
developers fo

 <answer>

 <answer> Pins 1, 4, and 8 must be connected together 
inside

 <answer>is to avoid the well known serial port chip 
bugs. The

 Procedure: For each FAQ, train on one part, test on 
others; average

 begins-with-number

 begins-with-ordinal

 begins-with-
punctuation

 begins-with-question-
word

 begins-with-subject

 blank indented-1-to-4

 contains-alphanum

 contains-bracketed-
number

 contains-http

 contains-non-space

 contains-number

 contains-pipe

Experimental Data Features in Experiment

 contains-question-mark

 contains-question-word

 ends-with-question-mark

 rst-alpha-is-capitalized

 Indented

 indented-1-to-4

 indented-5-to-10

 more-than-one-third-

space

 only-punctuation

 prev-is-blank

 prev-begins-with-ordinal

 shorter-than-30

MAXIMUM ENTROPY MARKOV MODELS
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 

HMM MEMM
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EXPONENTIAL MODEL FOR TRANSITION

 Model transition in terms of multiple, non-independent 

features of observations

 Objective function: H(p)

 Goal: Among all the distributions that satisfy the constraints, 

choose the one, p*, that maximizes H(p).

 Question: How to represent constraints?

 Feature: a binary valued function on events

 A: the set of possible classes (e.g., tags in POS tagging)

 B: space of contexts (e.g., neighboring words/ tags in POS 
tagging)
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In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

EXPONENTIAL MODEL FOR TRANSITION (CONT)

 Task: Find p*

where

 Objective function: H(p)

 Constraints:

 Is P empty?

 Questions:
 Does p* exist?

 Is p* unique?

 What is the form of p*? 

 How to find p*? 
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Z is the normalizing factor that 

makes the distribution sum to 

one across all next states s

STATE ESTIMATION
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 forward probability
 probability of producing 

the observation sequence 

up to time t and being in 

state s at time t

 Forward probability
 Probability of being in state s 

at time t given the observation 

sequence up to time t

 Backward probability

HMM MEMM
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MODELS TESTED

 MaxEntStateless
 A single maximum entropy classier applied to each line 

independently.

 TokenHMM
 A fully connected HMM with four states, one for each of the 

line categories, each of which generates individual tokens 
(groups of alphanumeric characters and individual 
punctuation characters).

 FeatureHMM
 Identical to tokenHMM, only the lines in a document are first 

converted to sequences of features.

 MaxEntMM
 The maximum entropy Markov model described in this paper.
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EXPERIMENTAL RESULTS
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SUMMARY

 Combine HMMs and maximum-entropy models 
into a general model

 Allow state transitions to depend on non-independent 
features of the sequence under analysis

 Conditional model that represents the probability of 
reaching a state given an observation and the 
previous state

 Training algorithm

 Direct generalizations of HMMs algorithms: forward-
backward, Baum-Welch

 Generalized iterative scaling for 

 Generalized Iterative Scaling (GIS)

 Prediction: Dynamic programming
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ADDITIONAL SLIDES
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MAXIMUM ENTROPY

 Goal: Estimate p

 Choose p with maximum entropy (or “uncertainty”) 

subject to the constraints (or “evidence”)

 Training

 a: state to be predicted

 b: context

 Example: a=NN, b=tags for current and previous words

 Learn probabilities of each (a,b): P(a,b)

 Maximum Entropy  = Minimum Commitment

 Model all is known: satisfy a set of constraints

 Assume nothing about what is unknown: choose the 

most “uniform” distribution
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MAXIMUM ENTROPY: COIN FLIP

 Toss a coin: P(H) = p1, P(T) = p2

 Constraint: p1 + p2 = 1

 Question: What is your estimation of p=(p1,p2)?

 Answer: Choose the p that maximizes H(p)
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In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

MAXIMUM ENTROPY: COIN FLIP
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p1 p2

p1 + p2 = 1

p1+p2=1.0,  p1=0.3

In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

 Maximum Entropy  = 
Minimum Commitment

 Model all is known: 
satisfy a set of constraints

 Assume nothing about 
what is unknown: choose 
the most “uniform” 
distribution

MAXIMUM ENTROPY

MARKOV MODEL
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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Variations

 Experimental Results
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EXPONENTIAL MODEL FOR TRANSITION (CONT)

 Finite training sample of events:

 Observed probability of x in S:

 The model p’s probability of x: 

 The jth feature:

 Observed expectation of

 Empirical count of

 Model expectation of

 Model’s feature expectation = observed feature expectation

 How to calculate             ?
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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Variations

 Experimental Results
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PARAMETER ESTIMATION
GENERALIZED ITERATIVE SCALING ( DARROCH & RATCLIFF, 1972)

 Setup

 Obey form of model and constraints

 Additional constraint:

 Let

 Add a new feature fk+1:
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GENERALIZED ITERATIVE SCALING ALGORITHM

 Compute    , j=1, …, k+1

 Initialize              (any values, e.g., 1) 

 REPEAT until converge

 FOR each j

Compute 

Update

 END FOR

 END REPEAT
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E-Step

M-Step

aF

WHAT IS THE FORM OF P*
(RATNAPARKHI, 1997)
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Theorem: if                   then                      

Furthermore, p* is unique.

QPp* )(maxarg* pHp
Pp

APPROXIMATION FOR CALCULATING

FEATURE EXPECTATION
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PROPERTIES OF GIS

 L(p(n+1)) >= L(p(n))

 The sequence is guaranteed to converge to p*.

 The converge can be very slow.

 The running time of each iteration is O(NPA):

 N: the training set size

 P: the number of classes

 A: the average number of features that are active for a 

given event (a, b).
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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Variations

 Experimental Results
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EXPERIMENTAL RESULTS
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