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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Experimental Results
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HIDDEN MORKOV MODEL (HMM)
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 A hidden Markov model (HMM)

is a triple (    ,A,B)

 States: 

 Output symbols: 

 Initial State Probabilities

 Specifies where the sequence starts

 State Transition Probabilities

 Probability that one state succeeds another

 Symbol Emission Probabilities

 Probability that observation is generated in this state

 Every output + state sequence has a probability
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OBJECTIVE OF MEMM
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 Maximum Entropy: 
Incorporate multiple 

overlapping features

 Indentation

 Numbered questions

 Styles of paragraph 

breaks

 Line length

 HMM: Conditional 

probability of state 

sequences given 

observations DET N

bear

The bear chased the cat

DET  N      V     DET  N

<question>

<question>

<question>

<answer>

<answer>

<answer>

EXPERIMENT SETUP
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 38 les belonging to 7 Usenet multipart FAQs

 <head>X-NNTP-Poster: NewsHound v1.33

 <head>

 <head>Archive-name: acorn/faq/part2

 <head>Frequency: monthly

 <head>

 <question>2.6) What configuration of serial cable 
should I use

 <answer>

 <answer> Here follows a diagram of the necessary 
connections

 <answer>programs to work properly. They are as far 
as I know t

 <answer>agreed upon by commercial comms software 
developers fo

 <answer>

 <answer> Pins 1, 4, and 8 must be connected together 
inside

 <answer>is to avoid the well known serial port chip 
bugs. The

 Procedure: For each FAQ, train on one part, test on 
others; average

 begins-with-number

 begins-with-ordinal

 begins-with-
punctuation

 begins-with-question-
word

 begins-with-subject

 blank indented-1-to-4

 contains-alphanum

 contains-bracketed-
number

 contains-http

 contains-non-space

 contains-number

 contains-pipe

Experimental Data Features in Experiment

 contains-question-mark

 contains-question-word

 ends-with-question-mark

 rst-alpha-is-capitalized

 Indented

 indented-1-to-4

 indented-5-to-10

 more-than-one-third-

space

 only-punctuation

 prev-is-blank

 prev-begins-with-ordinal

 shorter-than-30

MAXIMUM ENTROPY MARKOV MODELS
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HMM MEMM
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EXPONENTIAL MODEL FOR TRANSITION

 Model transition in terms of multiple, non-independent 

features of observations

 Objective function: H(p)

 Goal: Among all the distributions that satisfy the constraints, 

choose the one, p*, that maximizes H(p).

 Question: How to represent constraints?

 Feature: a binary valued function on events

 A: the set of possible classes (e.g., tags in POS tagging)

 B: space of contexts (e.g., neighboring words/ tags in POS 
tagging)
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In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

EXPONENTIAL MODEL FOR TRANSITION (CONT)

 Task: Find p*

where

 Objective function: H(p)

 Constraints:

 Is P empty?

 Questions:
 Does p* exist?

 Is p* unique?

 What is the form of p*? 

 How to find p*? 
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STATE ESTIMATION
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 forward probability
 probability of producing 

the observation sequence 

up to time t and being in 

state s at time t

 Forward probability
 Probability of being in state s 

at time t given the observation 

sequence up to time t

 Backward probability

HMM MEMM
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MODELS TESTED

 MaxEntStateless
 A single maximum entropy classier applied to each line 

independently.

 TokenHMM
 A fully connected HMM with four states, one for each of the 

line categories, each of which generates individual tokens 
(groups of alphanumeric characters and individual 
punctuation characters).

 FeatureHMM
 Identical to tokenHMM, only the lines in a document are first 

converted to sequences of features.

 MaxEntMM
 The maximum entropy Markov model described in this paper.
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EXPERIMENTAL RESULTS
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FAQ Dataset

ME-Stateless

TokenHMM

FeatureHMM

MEMM
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SUMMARY

 Combine HMMs and maximum-entropy models 
into a general model

 Allow state transitions to depend on non-independent 
features of the sequence under analysis

 Conditional model that represents the probability of 
reaching a state given an observation and the 
previous state

 Training algorithm

 Direct generalizations of HMMs algorithms: forward-
backward, Baum-Welch

 Generalized iterative scaling for 

 Generalized Iterative Scaling (GIS)

 Prediction: Dynamic programming
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ADDITIONAL SLIDES
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MAXIMUM ENTROPY

 Goal: Estimate p

 Choose p with maximum entropy (or “uncertainty”) 

subject to the constraints (or “evidence”)

 Training

 a: state to be predicted

 b: context

 Example: a=NN, b=tags for current and previous words

 Learn probabilities of each (a,b): P(a,b)

 Maximum Entropy  = Minimum Commitment

 Model all is known: satisfy a set of constraints

 Assume nothing about what is unknown: choose the 

most “uniform” distribution
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MAXIMUM ENTROPY: COIN FLIP

 Toss a coin: P(H) = p1, P(T) = p2

 Constraint: p1 + p2 = 1

 Question: What is your estimation of p=(p1,p2)?

 Answer: Choose the p that maximizes H(p)
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In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

MAXIMUM ENTROPY: COIN FLIP
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p1 + p2 = 1

p1+p2=1.0,  p1=0.3

In courtesy of Fei Xia, Maximum Entropy Model, 02/2006

 Maximum Entropy  = 
Minimum Commitment

 Model all is known: 
satisfy a set of constraints

 Assume nothing about 
what is unknown: choose 
the most “uniform” 
distribution

MAXIMUM ENTROPY

MARKOV MODEL
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OUTLINE

 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework

 Model :

 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling

 Prediction:

 State estimation from Observations

 Variations

 Experimental Results
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EXPONENTIAL MODEL FOR TRANSITION (CONT)

 Finite training sample of events:

 Observed probability of x in S:

 The model p’s probability of x: 

 The jth feature:

 Observed expectation of

 Empirical count of

 Model expectation of

 Model’s feature expectation = observed feature expectation

 How to calculate             ?
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 Conditional Model

 Hidden Markov Model

 Maximum Entropy

 Maximum Entropy Markov Model Framework
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 Exponential Model for Transition

 Learning:

 Generalized Iterative Scaling
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 State estimation from Observations
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 Experimental Results
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PARAMETER ESTIMATION
GENERALIZED ITERATIVE SCALING ( DARROCH & RATCLIFF, 1972)

 Setup

 Obey form of model and constraints

 Additional constraint:

 Let

 Add a new feature fk+1:
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GENERALIZED ITERATIVE SCALING ALGORITHM

 Compute    , j=1, …, k+1

 Initialize              (any values, e.g., 1) 

 REPEAT until converge

 FOR each j

Compute 

Update

 END FOR

 END REPEAT
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E-Step

M-Step

aF

WHAT IS THE FORM OF P*
(RATNAPARKHI, 1997)
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Furthermore, p* is unique.

QPp* )(maxarg* pHp
Pp

APPROXIMATION FOR CALCULATING

FEATURE EXPECTATION
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PROPERTIES OF GIS

 L(p(n+1)) >= L(p(n))

 The sequence is guaranteed to converge to p*.

 The converge can be very slow.

 The running time of each iteration is O(NPA):

 N: the training set size

 P: the number of classes

 A: the average number of features that are active for a 

given event (a, b).
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EXPERIMENTAL RESULTS
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