

• Assume nothing about what is unknown: choose the most "uniform" distribution

PROPERTIES OF GIS L(p⁽ⁿ⁺¹⁾) >= L(p⁽ⁿ⁾) The sequence is guaranteed to converge to p*. The converge can be very slow. The running time of each iteration is O(NPA): N: the training set size P: the number of classes A: the average number of features that are active for a given event (a, b).

