Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data

Anguelov et. al., (CVPR), 2005

Presentation for CS 6784
Sarah lams, 18 Feb 2010

Features

- How planar is the neighborhood of the point?
- Is a point close to the ground?

- Are there many points nearby?
- What are the principal components of the spin images?

Capture problem structure

- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label, $Y_{i} \in\{\dot{1}, \ldots, K\}$
- The entire network is associated with a set of labels, $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$
- They are interested in a distribution ove $\{1, \ldots, K\}^{N}$ specified by the geometry of the graph

spatial structure embedded in network
example: one possible labeling $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$

Intuition for the problem

(I) ID vehicles vs background (synthetic data)

(3) Find head, limbs, torso, background

(2) Find buildings, trees, shrubs, ground

Capture problem structure

- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label, $Y_{i} \in\{\hat{1}, \ldots, K\}$
- The entire network is associated with a set of labels, $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$
- They are interested in a distribution ove $\{1, \ldots, K\}^{N}$ specified by the geometry of the graph

example:
one possible labeling
$\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$

Capture problem structure

- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label, $Y_{i} \in\{\dot{1}, \ldots, K\}$
- The entire network is associated with a set of labels, $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$
- They are interested in a distribution over\{1, $\ldots, K\}^{N}$ specified by the geometry of the graph

one possible labeling $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$

Pairwise MRF assumption

- pairwise Markov network: nodes and edges are associated with potentials, $\phi_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}\right)$ and $\phi_{\mathrm{ij}}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$
- all potentials are then multiplied (and normalized) to produce $\mathrm{P}(\mathrm{Y} \mid$ X)
- This is identical to saying the logs of the potentials are added to produce $\log \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- the feature values, ψ_{i}, at each node dictate the values of $\phi_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}\right)$
- the similarity of the prospective labels, $\psi_{i j}$, along an edge dictates $\phi_{\mathrm{ij}}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$

$$
P(Y \mid X)=\frac{1}{Z} \prod_{i} \phi_{i}\left(Y_{i}\right) \prod_{i j} \phi_{i j}\left(Y_{i}, Y_{j}\right)
$$

$$
\log P(Y \mid X)=\sum_{i} \log \phi_{i}\left(Y_{i}\right)
$$

$$
+\sum_{i j} \log ^{2} \phi_{i j}\left(Y_{i}, Y_{j}\right)-\log (Z)
$$

$$
\log \phi_{i}(k)=\mathbf{w}_{n}^{k} \cdot \psi_{i}
$$

$$
\log \phi_{i j}(k, l)=\mathbf{w}_{e}^{k l} \cdot \psi_{i j}
$$

AMN assumption

- want to find the \mathbf{Y} that maximized $P(Y \mid X)$. Note maximizing $P(Y \mid X)$ is identical to maximizing $\log \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- they make one more assumption to simplify the optimization problem: edge weight is 0 when an edge connects nodes with different labels. Otherwise, the weight is non-negative.
- This is the associative Markov network assumption.
$\arg \max _{\mathbf{Y}} \log P(Y \mid X)=$
$\underset{\mathbf{Y}}{\arg \max _{\mathbf{Y}}}\left(\sum_{i} \log \phi_{i}\left(Y_{i}\right)\right.$ $\left.+\sum_{i j} \log \phi_{i j}\left(Y_{i}, Y_{j}\right)-\log (Z)\right)$

Optimization problem

$\arg \max _{\mathbf{Y}} \log P(Y \mid X)=\arg \max _{\mathbf{Y}}\left(\sum_{i} \log \phi_{i}\left(Y_{i}\right)+\sum_{i j} \log \phi_{i j}\left(Y_{i}, Y_{j}\right)-\log (Z)\right)$

$$
\begin{aligned}
& \log \phi_{i}(k)=\mathbf{w}_{n}^{k} \cdot \psi_{i} \\
& \log \phi_{i j}(k, l)=0 \text { for }(k \neq l) \\
& \log \phi_{i j}(k, k)=\mathbf{w}_{e}^{k} \cdot \psi_{i j} \geq 0
\end{aligned}
$$

$\arg \max _{\mathbf{Y}} \log P(Y \mid X)=\arg \max _{\mathbf{Y}}\left(\sum_{i} \sum_{k}\left(\mathbf{w}_{n}^{k} \cdot \psi_{i}\right) y_{i}^{k}+\sum_{i j} \sum_{k}\left(\mathbf{w}_{e}^{k} \cdot \psi_{i j}\right) y_{i j}^{k}\right)$

- Given weights, we can solve this (min-cut algorithm)
- Or (evidently), we can reformulate as integer program \& relax to linear program: they choose this route because this arg max will reappear in the course of their learning method!

$\mathrm{M}^{3} \mathrm{~N}$ problem

$\max _{\gamma}$ s.t. $\quad \mathbf{w} \mathbf{X}\left(\mathbf{y}_{\text {correct }}-\mathbf{y}\right) \geq \gamma \Delta\left(\mathbf{y}_{\text {correct }}, \mathbf{y}\right) ;\|\mathbf{w}\|^{2} \leq 1$
$\Delta\left(\mathbf{y}_{\text {correct }}, \mathbf{y}\right)=N-\mathbf{y}_{\text {correct }, \text { nodes }}^{\mathbf{T}} \mathbf{y}_{\text {nodes }}$

- Note that \mathbf{y} is an indicator vector, so when $\mathbf{y}_{\text {correct }}$ and \mathbf{y} agree on a node label, that contributes to their dot product. When they disagree, it contributes 0 to the dot product.
- They define the loss function to count how many times y is wrong on labeling the nodes. (Note $\mathrm{M}^{3} \mathrm{~N}$ was approached without a loss function restriction on Tuesday).
- As usual, next they'll divide through by the margin (γ) and add a slack variable (in case the data isn't separable)

Primal formulation

$\min \frac{1}{2}\|\mathbf{w}\|^{2}+C \xi$ s.t. $\mathbf{w} \mathbf{X}\left(\mathbf{y}_{\text {correct }}-\mathbf{y}\right) \geq N-\mathbf{y}_{\text {correct,nodes }}^{\mathrm{T}} \mathrm{y}_{\text {nodes }}-\xi \quad \forall \mathbf{y}$

- this is a quadratic program
- exponentially many constraints
- we can replace the constraints with a single constraint over a quadratic program!

$$
\begin{aligned}
& \mathbf{w} \mathbf{X}\left(\mathbf{y}_{\text {correct }}-\mathbf{y}\right) \geq N-\mathbf{y}_{\text {correct,nodes }}^{\mathbf{T}} \mathbf{y}_{\text {nodes }}-\xi \forall \mathbf{y} \\
& \quad \Rightarrow \mathbf{w} \mathbf{X}_{\text {correct }}-N+\xi \geq \mathbf{w} \mathbf{X} \mathbf{y}-\mathbf{y}_{\text {correct,nodes }}^{\mathbf{T}} \mathbf{y}_{\text {nodes }} \forall \mathbf{y} \\
& \quad \Rightarrow \mathbf{w}_{\mathbf{X}}^{\mathbf{y}_{\text {correct }}}-N+\xi \geq \max _{\mathbf{y}} \mathbf{w} \mathbf{X} \mathbf{y}-\mathbf{y}_{\text {correct,nodes }}^{\mathrm{T}} \mathbf{y}_{\text {nodes }}
\end{aligned}
$$

- we recognize this quadratic program from before
- Recall: $\arg \max _{\mathbf{Y}} \log P(Y \mid X)=\arg \max _{\mathbf{y}} \mathbf{w} \mathbf{X y}$

Switch to dual (twice)
$\min \frac{1}{2}\|\mathbf{w}\|^{2}+C \xi$ s.t. $\mathbf{w} \mathbf{X} \mathbf{y}_{\text {correct }}-N+\xi \geq \max _{\mathbf{y}} \mathbf{w} \mathbf{X} \mathbf{y}-\mathbf{y}_{\text {correct, nodes }}^{\mathrm{T}} \mathbf{y}_{\text {nodes }}$

- They switch to the dual problem in the constraint.

$$
\begin{gathered}
\min \frac{1}{2}\|\mathbf{w}\|^{2}+C \xi \text { s.t. } \mathbf{w} \mathbf{X}_{\text {correct }}-N-\xi \geq \sum_{i=1}^{N} \alpha_{i} ; \mathbf{w}_{\mathbf{e}} \geq 0 ; \alpha_{i}-\sum_{i j} \alpha_{i j}^{k} \geq w_{n}^{k} \cdot \psi_{i}-y_{\text {correct }, i}^{k} \\
\alpha_{i j}^{k}+\alpha_{j i}^{k} \geq w_{e}^{k} \cdot \psi_{i j} ; \alpha_{i j}^{k}, \alpha_{j i}^{k} \geq 0
\end{gathered}
$$

- Then they switch to the dual in the overall problem. (l am not including the dual here.) The primal and dual are related as follows:

$$
w_{n}^{k}=\sum_{i=1}^{N} \psi_{i}\left(C y_{\text {correct }, i}^{k}-\mu_{i}^{k}\right) \quad w_{e}^{k}=f\left(\phi_{i j}^{k}\right)+\sum_{i, j} \psi_{i j}\left(C y_{\text {correct }, i j}^{k}-\mu_{i j}^{k}\right)
$$

- Since $W_{n}{ }^{k}$ is a sum over Ψ_{i} multiplied by constants, $W_{n}{ }^{k} \Psi$ can be kernelized. The edge potentials cannot be, however, because of the constant term added to the sum.

Testing the AMN

- The associative Markov network ensures nearby points have the same label (SVM does not do this)
- After five training scenes:

Testing the AMN

