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Examples of Complex Output Spaces
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• Part-of-Speech Tagging

– Given a sequence of words x, predict sequence of 
tags y.

– Dependencies from tag-tag transitions in Markov 
model.

Examples of Complex Output Spaces

• Natural Language Parsing

– Given a sequence of words x, predict the parse tree y.

– Dependencies from structural constraints, since y has to 

be a tree.
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Examples of Complex Output Spaces

• Protein Sequence Alignment

– Given two sequences x=(s,t), predict an alignment y.

– Structural dependencies, since prediction has to be a 

valid global/local alignment. 

x y

AB-JLHBNJYAUGAI

BHJK-BN-YGU

s=(ABJLHBNJYAUGAI)

t=(BHJKBNYGU)

Learning Task

• Setup: P(X,Y) = P(X) P(Y|X)

– Input Space: X (i.e. feature vectors, word sequence, etc.)

– Output Space: Y (i.e. class, tag sequence, parse tree, etc.)

– Training Data: S=((x1,y1), …, (xn,yn)) ~iid P(X,Y)

• Goal: Find f: X ! Y with low expected loss

– Loss function: (y,y’) (penalty for predicting y’ if y correct)

– Expected loss (i.e. risk, prediction error): 

Goals of Paper

• Paper proposes Support Vector Machine (SVM) method

– that does not build generative model, but directly finds rule 

with low training loss (i.e. ERM).

– that applies to a large class of structured outputs Y

• sequences (i.e. hidden Markov models)

• trees (i.e. context-free grammars)

• hierarchical classification

• sequence alignment (i.e. string edit distance)

– allows the use of fairly general loss functions

– is a generalization of multi-class SVMs

– has polynomial time training algorithm.
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Outline and Approach

• What form does the prediction rule take?

– Discriminant rule:

– Challenge: How to compute prediction efficiently?

• What form does the discriminant function take?

– Linear: 

– Challenge: How to represent the model compactly?

• How to train?

– Discriminative, empirical risk minimization.

– Minimize upper bound on training loss

– Challenge: How to efficiently find “best” w?

What Form does the Discr. Function Take?

• Linear Chain Model (HMM)

– Joint feature map for local dependencies

– Score for each adjacent label/label and word/label pair

– Find highest scoring sequence 
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Connection to Graphical Models

Hidden Markov Model:

– Assumptions

! Rule: 

with  wab= -log[P(Yc=a|Yp=b)] and wcd= -log[P(Xc=c|Yc=d)]
and (x,y) histogram
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What Form does the Discr. Function Take?

• Weighted Context Free Grammar

– Each rule     (e.g.                      )  has a weight 

– Score of a tree is the sum of its weights

– Find highest scoring tree 

catN

chasedV

dogN

theDet

dogDet

NPVVP

NDetNP

NPS

VPNPS





















































1

1

1

2

0

1

2

0

1

),(


yx

S

VPNP

Det NV

NP

Det N

The catthechaseddogx

y

CKY Parser

VPNPS 

Outline and Approach

• What form does the prediction rule take?

– Discriminant rule:

– Challenge: How to compute prediction efficiently?

• What form does the discriminant function take?

– Linear: 

– Challenge: How to represent the model compactly?

• How to train?

– Discriminative, empirical risk minimization.

– Minimize upper bound on training loss

– Challenge: How to efficiently find “best” w?

How to Compute Prediction Efficiently?

• Linear Chain (HMM): Viterbi

• Tree (Weighted Context-Free Grammar): CKY

• Sequence Alignment: Smith/Waterman algorithm
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Outline and Approach

• What form does the prediction rule take?

– Discriminant rule:

– Challenge: How to compute prediction efficiently?

• What form does the discriminant function take?

– Linear: 

– Challenge: How to represent the model compactly?

• How to train?

– Discriminative, empirical risk minimization.

– Minimize upper bound on training loss

– Challenge: How to efficiently find “best” w?

Hard-Margin SVM

Training Data: 

Classification Rule: 

Training: Find hyperplane with the largest distance to the 

closest training examples.

Support Vectors: Examples with minimal distance (i.e. margin).

Optimization Problem (Primal):

d
d

d

[Vapnik et al.]

Soft-Margin SVM
Idea: Maximize margin and minimize training error.

Soft-Margin OP (Primal):Hard-Margin OP (Primal):

• Slack variable ξi measures by how 

much (xi,yi) fails to achieve margin δ

• Σξi is upper bound on number of 

training errors

• C is a parameter that controls trade-off 

between margin and training error.

[Cortes et al.]

Controlling Soft-Margin Separation

• Σξi is upper bound on 

number of training errors

• C is a parameter that 

controls trade-off between 

margin and training error.

Soft-Margin OP (Primal):

Example Reuters “acq”: Varying C Structural Support Vector Machine

• Joint features               describe match between x and y

• Learn weights     so that                      is max for correct y

…
Hard-margin optimization problem:
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Soft-Margin Struct SVM (Margin Rescaling)

• Loss function                measures match between target and 

prediction.

…
Lemma: The training loss is upper bounded by

Soft-margin optimization problem:

Soft-Margin Struct SVM (Slack Rescaling)

• Loss function                measures match between target and 

prediction.

…
Lemma: The training loss is upper bounded by

Soft-margin optimization problem:

Cutting-Plane Algorithm for Structural SVM

• Input:                                        

•

• REPEAT

– FOR

• compute

• IF

– optimize StructSVM over

• ENDIF

– ENDFOR

• UNTIL     has not changed during iteration

Find most 

violated 

constraint

Violated 

by more 

than  ?

_

Add constraint 

to working set

[AltHo03] [Jo03] [TsoJoHoAl05]

Polynomial Sparsity Bound

• Theorem: The sparse-approximation algorithm finds a 

solution to the soft-margin optimization problem after 

adding at most

constraints to the working set    , so that the Kuhn-Tucker 

conditions are fulfilled up to a precision   . The loss has to 

be bounded                          , and                       .

[Jo 03] [Tsochantaridis et al. 04] [Tsochantaridis et al. 05]

Dual QP for Classification SVM

• Primal Optimization Problem

• Dual Optimization Problem

• Theorem: If w* is the solution of the Primal and α* is the 

solution of the Dual, then                                 and 

P(w*,b*,ξ*)=D(α*). For all other feasible w,b,ξ and α, 

P(w,b,ξ)>D(α). 

Dual QP for Structural SVM

• Primal Optimization Problem

• Dual Optimization Problem

• Theorem: ditto…
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Lemma Improved Training Algorithm and Bound

• Theorem: The cutting-plane algorithm finds a solution to 

the Structural SVM soft-margin optimization problem in the 

1-slack formulation after adding at most

constraints to the working set S, so that the primal 

constraints are feasible up to a precision    and the objective 

on S is optimal. The loss has to be bounded                          , 

and                         .
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[Jo06] [TeoLeSmVi07] [JoFinYu08]

 For non-kernelized models, training time scales 

linearly with number of training examples.

Experiment: Natural Language Parsing

• Implemention

– Implemented Sparse-Approximation Algorithm in SVMlight

– Incorporated modified version of Mark Johnson’s CKY parser

– Learned weighted CFG with

• Data

– Penn Treebank sentences of length at most 10 (start with POS)

– Train on Sections 2-22: 4098 sentences

– Test on Section 23: 163 sentences

[Tsochantaridis et al. 05]

More Expressive Features

• Linear composition:

• General form:

• So far:

• Example:

see [Taskar et al. 05]
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Experiment: Part-of-Speech Tagging

The dog chased the catx Det NVDet N
y

• Task

– Given a sequence of words x, predict sequence of tags y.

– Dependencies from tag-tag transitions in Markov model.

• Model

– Markov model with one state per tag and words as emissions

– Each word described by ~250,000 dimensional feature vector (all 
word suffixes/prefixes, word length, capitalization …)

• Experiment (by Dan Fleisher)

– Train/test on 7966/1700 sentences from Penn Treebank

Applying Structural SVM to New Problem

• Application specific

– Loss function

– Representation

– Algorithms to compute 

• Implementation SVM-struct: http://svmlight.joachims.org

– Context-free grammars, sequence alignment, linear chain HMM, 

diverse rankings, classification with multivariate loss (e.g. F1, 

ROC Area), etc.

– General API for other problems
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Summary

• Support Vector Machine approach to training

– Hidden Markov Models

– Weighted Context-Free Grammars

– Sequence Alignment cost functions

– Etc.

• Incorporate loss functions via

– Margin rescaling

– Slack rescaling

• General training algorithm based on cutting-plane method

– Efficient for all linear discriminant models where argmax

efficient


