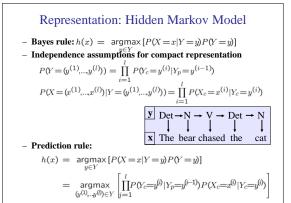
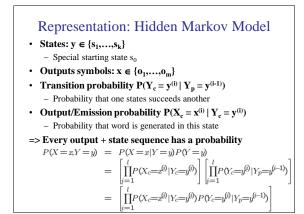
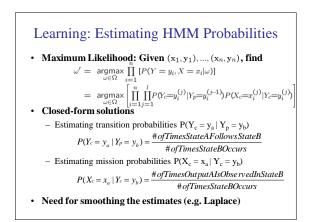

CS6784 - Spring 2010

Primer on Hidden Markov Models


Thorsten Joachims

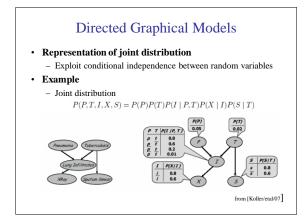

Cornell University Department of Computer Science

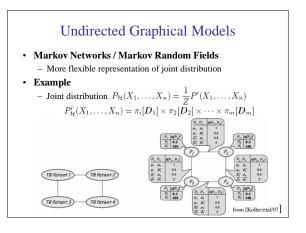


Predicting Sequences

- Bayes rule: $h(x) = \arg\max_{y \in Y} [P(X=x|Y=y)P(Y=y)]$ - Generative model
- Design decisions:
- Representation
 - Linear chain Hidden Markov Model
- Prediction (i.e. inference)
- Viterbi algorithm
- Learning
 - Maximum likelihood

Prediction/Inference: Viterbi Algorithm


Prediction: Find most likely state sequence


- Given x and fully specified HMM:
 - $P(Y_c = y_a | Y_p = y_b)$ (transition probabilities) $P(X_c = x_a | Y_c = y_b)$ (emission probabilities)
- Find the most likely state (i.e tag) sequence (y_1, \ldots, y_l) for a given sequence of observed output symbols (i.e. words) (x_1,\ldots,x_l) Γı

$$h(x) = \operatorname*{argmax}_{(y^{(1)}, ..., y^{(0)}) \in Y} \left| \prod_{i=1}^{P(Y_c = y^{(i)} | Y_p = y^{(i-1)}) P(X_c = x^{(i)} | Y_c = y^{(i)}) \right|$$

- Viterbi algorithm uses dynamic programming · Construct trellis graph for HMM · Shortest path in this graph is most likely state sequence
- Viterbi algorithm has runtime linear in length of sequence

Viterbi Example							
P(X=x Y=y)) I	bank	at	CFCU	go	to	the
DET	0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP	0.94	0.01	0.01	0.01	0.01	0.01	0.01
N	0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP	0.01	0.01	0.48	0.01	0.01	0.47	0.01
v	0.01	0.4	0.01	0.01	0.55	0.01	0.01
	P(Y Y _{prev})	DET	PRP	N	PREP	V	
	START	0.3	0.3	0.1	0.1	0.2	
D	DET	0.01	0.01	0.96	0.01	0.01	
	PRP	0.01	0.01	0.01	0.2	0.77	
	N	0.01	0.2	0.3	0.3	0.19	
	PREP	0.3	0.2	0.3	0.19	0.01	
	v	0.2	0.19	0.3	0.3	0.01	

