Machine Learning Theory (CS 6783)

Lecture 6: Binary Classification, VC Dimension, Learnability and VC/Sauer/Shelah Lemma

1 Recap

1. For the ERM we have,

$$\mathbb{E}_{S}\left[L_{D}(\hat{\mathbf{y}}_{\text{ERM}}) - \inf_{f \in \mathcal{F}} L_{D}(f)\right] \leq \frac{2}{n} \mathbb{E}_{S}\left[\mathbb{E}_{\epsilon}\left[\sup_{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} \ell(f(x_{t}), y_{t})\right]\right]$$

RHS above is the Rademacher complexity of the loss composed with function class ${\cal F}$

2. This is useful because conditioned on data, we can get bounds that depend on effective size of \mathcal{F} on data x_1, \ldots, x_n .

$$\mathbb{E}_{S}\mathbb{E}_{\epsilon}\left[\sup_{f\in\mathcal{F}}\left\{\frac{1}{n}\sum_{t=1}^{n}\epsilon_{t}\ell(f(x_{t}),y_{t})\right\}\right] = \mathbb{E}_{S}\mathbb{E}_{\epsilon}\left[\sup_{\mathbf{f}\in\mathcal{F}_{|x_{1},\dots,x_{n}}}\frac{1}{n}\sum_{t=1}^{n}\epsilon_{t}\ell(\mathbf{f}[t],y_{t})\right]$$
$$=\{(f(x_{1}),\dots,f(x_{n})):f\in\mathcal{F}\}$$

where $\mathcal{F}_{|x_1,...,x_n} = \{(f(x_1),...,f(x_n)) : f \in \mathcal{F}\}$

- 3. Eg. threshold is learnable and effective size on n points is at most n+1 but \mathcal{F} is uncountably infinite.
- 4. Massart's finite lemma implies:

$$\mathbb{E}_{S}\mathbb{E}_{\epsilon}\left[\sup_{f\in\mathcal{F}}\left\{\frac{1}{n}\sum_{t=1}^{n}\epsilon_{t}\ell(f(x_{t}), y_{t})\right\}\right] \leq O\left(\mathbb{E}_{S}\left[\sqrt{\frac{\log\left|\mathcal{F}_{|x_{1},\dots,x_{n}}\right|}{n}}\right]\right)$$

2 Massart's Finite Lemma

Lemma 1. For any set $V \subset \mathbb{R}^n$:

$$\frac{1}{n}\mathbb{E}_{\epsilon}\left[\sup_{\mathbf{v}\in V}\sum_{t=1}^{n}\epsilon_{t}\mathbf{v}[t]\right] \leq \frac{1}{n}\sqrt{2\left(\sup_{\mathbf{v}\in V}\sum_{t=1}^{n}\mathbf{v}^{2}[t]\right)\log|V|}$$

Proof.

$$\sup_{\mathbf{v}\in V} \sum_{t=1}^{n} \epsilon_t \mathbf{v}[t] = \frac{1}{\lambda} \log \left(\sup_{\mathbf{v}\in V} \exp\left(\lambda \sum_{t=1}^{n} \epsilon_t \mathbf{v}[t]\right) \right)$$
$$\leq \frac{1}{\lambda} \log \left(\sum_{\mathbf{v}\in V} \exp\left(\lambda \sum_{t=1}^{n} \epsilon_t \mathbf{v}[t]\right) \right)$$
$$= \frac{1}{\lambda} \log \left(\sum_{\mathbf{v}\in V} \prod_{t=1}^{n} \exp\left(\lambda \epsilon_t \mathbf{v}[t]\right) \right)$$

Taking expectation w.r.t. Rademacher random variables,

$$\mathbb{E}_{\epsilon} \left[\sup_{\mathbf{v} \in V} \sum_{t=1}^{n} \epsilon_t \mathbf{v}[t] \right] \leq \frac{1}{\lambda} \mathbb{E}_{\epsilon} \left[\log \left(\sum_{\mathbf{v} \in V} \prod_{t=1}^{n} \exp\left(\lambda \epsilon_t \mathbf{v}[t]\right) \right) \right]$$

Since log is a concave function, by Jensen's inequality, Expected log is upper bounded by log of expectation and so:

$$\leq \frac{1}{\lambda} \log \left(\mathbb{E}_{\epsilon} \left[\sum_{\mathbf{v} \in V} \prod_{t=1}^{n} \exp\left(\lambda \epsilon_{t} \mathbf{v}[t]\right) \right] \right)$$

$$= \frac{1}{\lambda} \log \left(\sum_{\mathbf{v} \in V} \prod_{t=1}^{n} \mathbb{E}_{\epsilon_{t}} \left[\exp\left(\lambda \epsilon_{t} \mathbf{v}[t]\right) \right] \right)$$

$$= \frac{1}{\lambda} \log \left(\sum_{\mathbf{v} \in V} \prod_{t=1}^{n} \frac{e^{\lambda \mathbf{v}[t]} + e^{-\lambda \mathbf{v}[t]}}{2} \right)$$

For any x, $\frac{e^x + e^{-x}}{2} \le e^{x^2/2}$

$$\leq \frac{1}{\lambda} \log \left(\sum_{\mathbf{v} \in V} e^{\lambda^2 \sum_{t=1}^n \mathbf{v}^2[t]/2} \right)$$
$$\leq \frac{1}{\lambda} \log \left(|V| e^{\lambda^2 \sup_{\mathbf{v} \in V} \left(\sum_{t=1}^n \mathbf{v}^2[t] \right)/2} \right)$$
$$= \frac{\log |V|}{\lambda} + \frac{\lambda \sup_{\mathbf{v} \in V} \left(\sum_{t=1}^n \mathbf{v}^2[t] \right)}{2}$$

Choosing $\lambda = \sqrt{\frac{2\log|V|}{\sup_{\mathbf{v}\in V} \left(\sum_{t=1}^{n} \mathbf{v}^{2}[t]\right)}}$ completes the proof.

3 Growth Function and VC dimension

Growth function is defined as,

$$\Pi(\mathcal{F}, n) = \max_{x_1, \dots, x_n} \left| \mathcal{F}_{|x_1, \dots, x_n} \right|$$

Clearly we have from the previous results on bounding minimax rates for statistical learning in terms of cardinality of growth function that :

$$\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \le \sqrt{\frac{2\log \Pi(\mathcal{F}, n)}{n}}$$

Note that $\Pi(\mathcal{F}, n)$ is at most 2^n but it could be much smaller. In general how do we get a handle on growth function for a hypothesis class \mathcal{F} ? Is there a generic characterization of growth function of a hypothesis class ?

Definition 1. VC dimension of a binary function class \mathcal{F} is the largest number of points $d = VC(\mathcal{F})$, such that

$$\Pi_{\mathcal{F}}(d) = 2^d$$

If no such d exists then $VC(\mathcal{F}) = \infty$

If for any set $\{x_1, \ldots, x_n\}$ we have that $|\mathcal{F}_{|x_1, \ldots, x_n}| = 2^n$ then we say that such a set is shattered. Alternatively VC dimension is the size of the largest set that can be shattered by \mathcal{F} . We also define VC dimension of a class \mathcal{F} restricted to instances x_1, \ldots, x_n as

$$\operatorname{VC}(\mathcal{F}; x_1, \dots, x_n) = \max\left\{t : \exists i_1, \dots, i_t \in [n] \text{ s.t. } \left|\mathcal{F}_{|x_{i_1}, \dots, x_{i_n}}\right| = 2^t\right\}$$

That is the size of the largest shattered subset of n. Note that for any $n \geq VC(\mathcal{F})$, $\sup_{x_1,\ldots,x_n} VC(\mathcal{F}_{|x_1,\ldots,x_n}) = VC(\mathcal{F})$.

- 1. To show $VC(\mathcal{F}) \geq d$ show that you can at least pick d points x_1, \ldots, x_d that can be shattered.
- 2. To show that $VC(\mathcal{F}) \leq d$ show that no configuration of d+1 points can be shattered.

Eg. Thresholds One point can be shattered, but two points cannot be shattered. Hence VC dimension is 1. (If we allow both threshold to right and left, VC dimension is 2).

Eg. Spheres Centered at Origin in *d* **dimensions** one point can be shattered. But even two can't be shattered. VC dimension is 1!

Eg. Half-spaces Consider the hypothesis class where all points to the left (or right) of a hyperplane in \mathbb{R}^d are marked positive and the rest negative. VC dimension is d + 1.

Lemma 2 (VC'71 (originially 64!)/Sauer'72/Shelah'72). For any class $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ with VC(\mathcal{F}) = d, we have that,

$$\Pi(\mathcal{F},n) \leq \sum_{i=0}^d \binom{n}{i}$$

Remark 3.1. Note that $\sum_{i=0}^{d} {n \choose i} \leq {n \choose d}^{d}$. Hence we can conclude that for any binary classification problem with hypothesis class \mathcal{F} ,

$$\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \le \frac{1}{n} \sup_D \mathbb{E}_S \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^n \epsilon_t f(x_t) \right] \le \sqrt{\frac{\operatorname{VC}(\mathcal{F}) \log\left(\frac{n}{\operatorname{VC}(\mathcal{F})}\right)}{n}}$$

Hence, if a binary hypothesis class \mathcal{F} has finite VC dimension, then it is learnable in the statistical learning (agnostic PAC) framework. $\log(n/\operatorname{VC}(\mathcal{F}))$ in the above bound can be removed.

Proof of VC Lemma. For notational ease let $g(d, n) = \sum_{i=0}^{d} {n \choose i}$. We want to prove that $\Pi(\mathcal{F}, n) \leq g(d, n) = g(d, n-1) + g(d-1, n-1)$. We prove this one by induction on n + d.

Base case : We need to consider two base cases. First, note that when VC dimension d = 0, then clearly for any $x, x' \in \mathcal{X}$, f(x) = f(x') and so we can conclude that for such a class \mathcal{F} effectively contains only one function and so $\Pi(\mathcal{F}, n) = g(0, n) = 1$. On the other hand, note that for any $d \ge 1$, if VC dimension of the function class \mathcal{F} is d then it can at least shatter 1 point and so $\Pi(\mathcal{F}, 1) = g(d, 1) = 2$. These form our base case.

Induction : Assume that the statement holds for any class \mathcal{F} with VC dimension $d' \leq d$ and any $n' \leq n-1$ that $\Pi(\mathcal{F}, n') \leq g(d', n')$. We shall prove that in this case, for any \mathcal{F} with VC dimension $d' \leq d$, $\Pi(\mathcal{F}, n) \leq g(d', n)$ and similarly for any $n' \leq n$, and for any \mathcal{F} with VC dimension at most d+1, $\Pi(\mathcal{F}, n') \leq g(d+1, n')$.

To this end, consider any class \mathcal{F} of VC dimension at most d' and consider any set of n instances x_1, \ldots, x_n . Define hypothesis class

$$\tilde{\mathcal{F}} = \left\{ f \in \mathcal{F} : \exists f' \in \mathcal{F} \text{ s.t. } f(x_n) \neq f'(x_n), \ \forall i < n, \ f(x_i) = f'(x_i) \right\}$$

That is the hypothesis class consisting of all functions that have a pair with same exact value of x_1, \ldots, x_{n-1} but opposite sign only on x_n . We first claim that,

$$\left|\mathcal{F}_{|x_1,\dots,x_n}\right| = \left|\mathcal{F}_{|x_1,\dots,x_{n-1}}\right| + \left|\tilde{\mathcal{F}}_{|x_1,\dots,x_{n-1}}\right|$$

This is because $\tilde{\mathcal{F}}_{|x_1,\ldots,x_{n-1}}$ are exactly the elements that need to be counted twice (once for + and once for -). We also claim that $VC(\tilde{\mathcal{F}}; x_1, \ldots, x_{n-1}) \leq d' - 1$ because if not, by definition of $\tilde{\mathcal{F}}$ we know that $\tilde{\mathcal{F}}$ can shatter x_n and so we will have that

$$\operatorname{VC}(\tilde{\mathcal{F}}; x_1, \dots, x_n) = \operatorname{VC}(\tilde{\mathcal{F}}; x_1, \dots, x_{n-1}) + 1 = d' + 1$$

This is a contradiction as \tilde{F} is a subset of \mathcal{F} which itself has only VC dimension at most d'. Thus we conclude that for any class \mathcal{F} of VC dimension at most d',

$$\Pi(\mathcal{F}, n) = \sup_{x_1, \dots, x_n} \left| \mathcal{F}_{|x_1, \dots, x_n} \right| \le \sup_{x_1, \dots, x_n} \left\{ \left| \mathcal{F}_{|x_1, \dots, x_{n-1}} \right| + \left| \tilde{\mathcal{F}}_{|x_1, \dots, x_{n-1}} \right| \right\}$$

where $VC(\tilde{\mathcal{F}}; x_1, \ldots, x_{n-1})$ is at most d-1. Using the above bound, the inductive hypothesis and the fact that g(d', n) = g(d', n-1) + g(d'-1, n-1), we conclude that for any class \mathcal{F} with VC dimension at most $d' \leq d$,

$$\Pi(\mathcal{F},n) \le \sup_{x_1,\dots,x_n} \left\{ \left| \mathcal{F}_{|x_1,\dots,x_{n-1}|} \right| + \left| \tilde{\mathcal{F}}_{|x_1,\dots,x_{n-1}|} \right| \right\} \le g(d',n-1) + g(d'-1,n-1) = g(d',n)$$

Similarly for any $n' \leq n$, and for any \mathcal{F} with VC dimension at most d + 1, we can show by repeatedly using the inductive hypothesis, starting from n' = 2 up until n' = n that for any $\Pi(\mathcal{F}, n') \leq g(d+1, n')$. This concludes out induction.