
Machine Learning Theory (CS 6783)

Lecture 5 : Symmetrization and Infinite classes

1 Recap

Last class we showed that

ES [LD(ŷERM)]− inf
f∈F

LD(f) ≤ sup
D

ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

This was using the Empirical Risk Minimizer (ERM)

1. When |F| <∞, using the above we showed that

ES [LD(ŷERM)]− inf
f∈F

LD(f) ≤
√

log |F|
n

2. For countably infinite class we showed MDL bound and the algorithm based on this bound.

3. However the learning rate was not uniform over F

4. If N(δ) is the smallest number of functions that can approximate F to within additive factor
δ uniformly over the instance space, then

ES [LD(ŷERM)]− inf
f∈F

LD(f) ≤ inf
δ>0

{
4δ +

√
logN(δ)

n

}

5. But N(δ) =∞ for even simple examples like threshold.
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2 Symmetrization and Rademacher Complexity

ES [LD(ŷERM)]− inf
f∈F

LD(f)

≤ ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

≤ ES,S′
[

sup
f∈F

{
1

n

n∑
t=1

`(f(x′t), y
′
t)−

1

n

n∑
t=1

`(f(xt), yt)

}]

= ES,S′Eε

[
sup
f∈F

{
1

n

n∑
t=1

εt(`(f(x′t), y
′
t)− `(f(xt), yt))

}]

≤ 2 ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
=: Rn(` ◦ F)

Where in the above each εt is a Rademacher random variable that is +1 with probability 1/2 and
−1 with probability 1/2. The above is called Rademacher complexity of the loss class ` ◦ F . In
general Rademacher complexity of a function class measures how well the function class correlates
with random signs. The more it can correlate with random signs the more complex the class is.

3 Why Does Symmetrization Help?

The main idea is that once we have introduced the Rademacher variables ε1, . . . , εn, we can look
at the Rademacher complexity conditioned on sample S. Specifically, given a sample S, define

F|x1,...,xn = {(f(x1), . . . , f(xn)) : f ∈ F}

and define
G|(x1,y1),...,(xn,yn) = {(`(f(x1), y1), . . . , `(f(xn), yn)) : f ∈ F}
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Now note that:

ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
= ESEε

[
sup

f∈F|x1,...,xn

1

n

n∑
t=1

εt`(f [t], yt)

]

= ESEε

[
sup

g∈G|(x1,y1),...,(xn,yn)

1

n

n∑
t=1

εtg[t]

]

Thus we see that we need to bound Eε
[
supf∈F|x1,...,xn

1
n

∑n
t=1 εt`(f [t], yt)

]
or equivaently Eε

[
supg∈G|(x1,y1),...,(xn,yn)

1
n

∑n
t=1 εtg[t]

]
. Since the term instead the supremum is still

a zero mean average, it is clear that only the cardinality of set F|x1,...,xn matters and not cardinality
of all of F . Why does this help?

Think about the threshold example, given n examples, the cardinality restricted to these sam-
ples is at most n+ 1. Why?
Well sort any given n points in ascending order, using thresholds, we can get at most n + 1 possible
labeling on the n points. Hence for any x1, . . . , xn, |F|x1,...,xn | ≤ n+ 1

If we use the intuition that max over a finite set (of cardinality say M) of average over n
zero mean bounded variables is at most O(

√
logM/n), then we see that this implies a rate of

O(
√

log(n+ 1)/n for learning thresholds. To make the argument concrete, we below reprove the
lemma for expected supremum over Rademacher averages over finite sets precisely. From the lemma
we prove next we immediately conclude that more generally:

ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
≤ O

ES

√ log
∣∣F|x1,...,xn∣∣
n


4 Massart’s Finite Lemma

Lemma 1. For any set V ⊂ Rn :

1

n
Eε

[
sup
v∈V

n∑
t=1

εtv[t]

]
≤ 1

n

√√√√2

(
sup
v∈V

n∑
t=1

v2[t]

)
log |V |

Proof.

sup
v∈V

n∑
t=1

εtv[t] =
1

λ
log

(
sup
v∈V

exp

(
λ

n∑
t=1

εtv[t]

))

≤ 1

λ
log

(∑
v∈V

exp

(
λ

n∑
t=1

εtv[t]

))

=
1

λ
log

(∑
v∈V

n∏
t=1

exp (λεtv[t])

)
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Taking expectation w.r.t. Rademacher random variables,

Eε

[
sup
v∈V

n∑
t=1

εtv[t]

]
≤ 1

λ
Eε

[
log

(∑
v∈V

n∏
t=1

exp (λεtv[t])

)]

Since log is a concave function, by Jensen’s inequality, Expected log is upper bounded by log of
expectation and so:

≤ 1

λ
log

(
Eε

[∑
v∈V

n∏
t=1

exp (λεtv[t])

])

=
1

λ
log

(∑
v∈V

n∏
t=1

Eεt [exp (λεtv[t])]

)

=
1

λ
log

(∑
v∈V

n∏
t=1

eλv[t] + e−λv[t]

2

)

For any x, ex+e−x

2 ≤ ex2/2

≤ 1

λ
log

(∑
v∈V

eλ
2
∑n

t=1 v
2[t]/2

)

≤ 1

λ
log
(
|V |eλ2 supv∈V (

∑n
t=1 v

2[t])/2
)

=
log |V |
λ

+
λ supv∈V

(∑n
t=1 v

2[t]
)

2

Choosing λ =

√
2 log |V |

supv∈V (
∑n

t=1 v
2[t])

completes the proof.

4


