
Machine Learning Theory (CS 6783)

Lecture 4 : MDL principle, Uniform Rate and Infinite classes

1 Recap

1. ERM Algorithm: ŷERM = argmin
f∈F

∑
(x,y)∈S `(f(x), y)

2. For the ERM algorithm, we have

ES
[
LD(ŷERM)− inf

f∈F
LD(f)

]
≤ ES sup

f∈F

[
E(x,y)∼D[`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

]

3. For finite class,

ES sup
f∈F

[
E(x,y)∼D[`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

]
≤ O

(
log(n|F|)

n

)

What about infinite F?

2 MDL bound (Occam’s Razor Principle)

We saw how one can get bounds for the case when F has finite cardinality. How about the case
when F has infinite cardinality ? To start with, let us consider the case when F is a countable set.

MDL Algorithm: The MDL learning rule picks the hypothesis in F as follows :

ŷmdl = argmin
f∈F

1

n

n∑
t=1

`(f(xt), yt) + 3

√
log(n/π2(f))

n

Interpretation : minimize empirical error while also ensuring that the hypothesis we pick has a
large prior π. Why is this learning rule appealing ?

We will use the below claim to provide us an intuition for why the MDL algorithm is effective.

Claim 1. For any countable set F , any fixed distribution π on F ,

ES

[
sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣−
√

log(n/π2(f))

n

}]
≤ 4√

n
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Proof. The basic idea is to use Hoeffding bound along with union bound as before, but instead of
using same ε for every f ∈ F in Hoeffding bound, we use f specific ε(f). We shall specify the exact
form of ε(f) later. For now note that, since the losses are bounded by 1,

sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f)

}
≤ 0 + 2 11{supf∈F{|LD(f)− 1

n

∑n
t=1 `(f(xt),yt)|−ε(f)>0}}

Hence, taking expectation w.r.t. sample we have that

ES

[
sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f)

}]
≤ 2P

(
sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f) > 0

})

By Hoeffding inequality, for any fixed f ∈ F

P

(∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f) > 0

)
≤ 2 exp

(
−ε

2(f)n

2

)
Taking union bound we have,

P

(
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f) > 0

)
≤
∑
f∈F

2 exp

(
−ε

2(f)n

2

)
Hence we conclude that

ES

[
sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣− ε(f)

}]
≤ 4

∑
f∈F

exp

(
−ε

2(f)n

2

)
For the prior choice of π of distribution over set F , let us use

ε(f) =

√
log(n/π2(f))

n

Hence we can conclude that,

ES

[
sup
f∈F

{∣∣∣∣∣LD(f)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣−
√

log(n/π2(f))

n

}]
≤ 4

∑
f∈F

exp

(
−ε

2(f)n

2

)

≤
4
∑

f π(f)
√
n

=
4√
n

Let us use the claim above to analyze the learning rule.

Theorem 2. For the MDL algorithm, we have that:

ES [LD(ŷmdl)] ≤ inf
f∈F

{
LD(f) +

√
log(n/π2(f))

n

}
+

4√
n

2



Proof. Note that from the Claim 1, we have that,

ES

[
LD(ŷmdl)−

1

n

n∑
t=1

`(ŷmdl(xt), yt)−
√

log(n/π2(ŷmdl))

n

]
≤ 4√

n

By definition of ŷmdl we can conclude that

ES

[
LD(ŷmdl)− inf

f∈F

{
1

n

n∑
t=1

`(ŷmdl(xt), yt) +

√
log(n/π2(ŷmdl))

n

}]
≤ 4√

n

In other words,

ES [LD(ŷmdl)] ≤ ES

[
inf
f∈F

{
1

n

n∑
t=1

`(f(xt), yt) +

√
log(n/π2(f))

n

}]
+

4√
n

Let fD = argmin
f∈F

LD(f) +

√
log(n/π2(f))

n , replacing the infimum above we conclude that

ES [LD(ŷmdl)] ≤ ES

[
1

n

n∑
t=1

`(fD(xt), yt) +

√
log(n/π2(fD))

n

]
+

4√
n

= LD(fD) +

√
log(n/π2(fD))

n
+

4√
n

= inf
f∈F

{
LD(f) +

√
log(n/π2(f))

n

}
+

4√
n

(1)

(2)

Thus with the above bound, even for countably infinite F we can get bounds on ES [LD(ŷ)]−
minf∈F LD(f) as

ES [LD(ŷ)]−min
f∈F

LD ≤
√

log(n/π2(fD))

n
+

4√
n

that decreases with n, however the rate depends on log(1/π(fD)) where fD = argmin
f∈F

LD(f).

3 Infinite Hypothesis Class : first attempt

As a first attempt, one can think of approximating the function class to desired accuracy by a finite
number of representative elements. We call this a point-wise cover.

Definition 1. We say that set Fδ = {f̃1, . . . , f̃N} is an δ point-wise cover for function class F if
∀f ∈ F there exists i ∈ [N ] s.t.

sup
x,y
|`(f(x), y)− `(f̃i(x), y)| ≤ δ

Further define N(δ) to be the smallest N such that there exists an δ cover of F of cardinality at
most N .
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Claim 3. For any function class F , we have that

Vstatn (F) ≤ inf
δ>0

{
4δ +

√
logN(δ)

n

}

Proof. Let Fδ = {f̃1, . . . , f̃N(δ)} be an δ cover for the function class F . Further for every f ∈ F ,
let i(f) correspond to the index of the element in Fδ that is δ close to that f . Now note that,

ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

≤ ES

[
max
i∈[Nδ]

{
E
[
`(f̃i(x), y)

]
− 1

n

n∑
t=1

`(f̃i(xt), yt)

}]

+ ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)− E
[
`(f̃i(f)(x), y)

]
+

1

n

n∑
t=1

`(f̃i(f)(xt), yt)

∣∣∣∣∣
]

≤
√

logN(δ)

n
+ 4δ

where the first term in the last inequality is by using the finite class bound and the second term
is by using the definition of δ cover as f̃i(f) is δ close to f . Since choice of δ was arbitrary we can
take the infimum over choices of δ to conclude the proof.

Example : linear predictor, absolute loss, 1 dimension
f(x) = f · x, F = X = [−1, 1], Y = [−1, 1], `(y′, y) = |y − y′|

Nδ = 2
δ , Cover given by f1 = −1, f2 = −1 + δ, . . . , fNδ−1 = 1− δ, fNδ = 1.

V stat
n (F) ≤

√
log n

n

Example : linear predictor/loss, d dimensions
f(x) = f>x. F = X = {v ∈ Rd : ‖v‖2 ≤ 1}. Y = [−1, 1]. `(y′, y) = y · y′

Nδ = Θ
(
2
δ

)d
V stat
n (F) ≤

√
d log n

n

Example : thresholds
f(x) = sign(f −x), F = X = [−1, 1], Y = {−1, 1}, `(y′, y) = 11{y 6=y′}, Nδ =∞ for any δ < 1.
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4 Symmetrization and Rademacher Complexity

ES [LD(ŷerm)]− inf
f∈F

LD(f)

≤ ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

≤ ES,S′

[
sup
f∈F

{
1

n

n∑
t=1

`(f(x′t), y
′
t)−

1

n

n∑
t=1

`(f(xt), yt)

}]

= ES,S′Eε

[
sup
f∈F

{
1

n

n∑
t=1

εt(`(f(x′t), y
′
t)− `(f(xt), yt))

}]

≤ 2ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
=: Rn(` ◦ F)

Where in the above each εt is a Rademacher random variable that is +1 with probability 1/2 and
−1 with probability 1/2. The above is called Rademacher complexity of the loss class ` ◦ F . In
general Rademacher complexity of a function class measures how well the function class correlates
with random signs. The more it can correlate with random signs the more complex the class is.

How does this help?
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