Machine Learning Theory (CS 6783)

Lecture 4 : MDL principle, Uniform Rate and Infinite classes

1 Recap
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2. For the ERM algorithm, we have
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3. For finite class,
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What about infinite F?

2 MDL bound (Occam’s Razor Principle)

We saw how one can get bounds for the case when F has finite cardinality. How about the case
when F has infinite cardinality ? To start with, let us consider the case when F is a countable set.

MDL Algorithm: The MDL learning rule picks the hypothesis in F as follows :
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Interpretation : minimize empirical error while also ensuring that the hypothesis we pick has a
large prior m. Why is this learning rule appealing ?
We will use the below claim to provide us an intuition for why the MDL algorithm is effective.

Claim 1. For any countable set F, any fixed distribution © on F,
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Proof. The basic idea is to use Hoeffding bound along with union bound as before, but instead of
using same ¢ for every f € F in Hoeffding bound, we use f specific €(f). We shall specify the exact
form of €(f) later. For now note that, since the losses are bounded by 1,
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Hence, taking expectation w.r.t. sample we have that
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By Hoeffding inequality, for any fixed f € F
1 n
P ( EU(f@),y)] = 2 DU @),mn)| = e(f) > o) < 2exp <— :
t=1

Lo(f) = S UF(w)m)

t=1

—e(f )} SO+2 N Lo ()L S, () )| —e(/)>0})

~an>of)

Lo(f) = =S e(f (), m)

n
t=1

Es

Lo(f) — = 3 (), )
t=1

Taking union bound we have,
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Hence we conclude that
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For the prior choice of 7 of distribution over set F, let us use
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Hence we can conclude that,
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Let us use the claim above to analyze the learning rule.

Theorem 2. For the MDL algorithm, we have that:
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Proof. Note that from the Claim 1, we have that,
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By definition of §,q1 we can conclude that
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In other words,
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Let fp = argmin Lp(f) + W, replacing the infimum above we conclude that
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Thus with the above bound, even for countably infinite F we can get bounds on Eg [Lp(9)] —
minger Lp(f) as
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that decreases with n, however the rate depends on log(1/7(fp)) where fp = argmin Lp(f).
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3 Infinite Hypothesis Class : first attempt

As a first attempt, one can think of approximating the function class to desired accuracy by a finite
number of representative elements. We call this a point-wise cover.

Definition 1. We say that set F5 = {fl, ey fN} is an § point-wise cover for function class F if
Vf € F there exists i € [N] s.t.

sup [€(f(x),y) — £(fi(2),y)| <6
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Further define N(0) to be the smallest N such that there exists an 0 cover of F of cardinality at
most N.



Claim 3. For any function class F, we have that

VSt (F) < inf {45 o/ lee V() }
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Proof. Let Fs = {f1,..., fN((;)} be an § cover for the function class F. Further for every f € F,
let i(f) correspond to the index of the element in Fs that is § close to that f. Now note that,
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where the first term in the last inequality is by using the finite class bound and the second term
is by using the definition of ¢ cover as fjy) is d close to f. Since choice of  was arbitrary we can
take the infimum over choices of § to conclude the proof. O

Example : linear predictor, absolute loss, 1 dimension
f(w):fxv f:‘)(:[_lvl]a y:[_lvl]v K(y/ay):|y_y/|

Ns = 2, Cover given by fi = —1,fo=—1+6,..., fn,-1 =1—6, fn, = L.

logn

Vit (F) <

n

Example : linear predictor/loss, d dimensions
f@)=fTx. F=X={veR|v|,<1}. Y=[-11]. Uy y) =y

pstat () < [dlogn
n
Example : thresholds

flx) =sign(f—z), F=X=[-1,1], Y={-1,1}, Uy,y)= Ly, Ns=ocforanyd <1.

Ny =6 (3)’




4 Symmetrization and Rademacher Complexity
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Where in the above each ¢ is a Rademacher random variable that is +1 with probability 1/2 and
—1 with probability 1/2. The above is called Rademacher complexity of the loss class £ o F. In
general Rademacher complexity of a function class measures how well the function class correlates
with random signs. The more it can correlate with random signs the more complex the class is.

Example : X =[0,1], YV = [-1,1]

How does this help?



