
Machine Learning Theory (CS 6783)

Lecture 3 : No Free Lunch Theorem, ERM, Uniform Convergence and MDL Principle

1 No Free Lunch Theorem

The more expressive the class F is, the larger is VPACn (F),VNRn (F) and Vstatn (F). The no free
lunch theorem says that if F = YX , then, there is no convergence of minimax rates.

Proposition 1. If |X | ≥ 2n then,
VPACn (YX ) ≥ 1/4

Proof. Consider DX to be the uniform distribution over 2n points. Also let f∗ ∈ YX be a random
choice of the possible 22n function on these points. Let εj = f∗(xj), note that due to our random
choice of f∗, εj is +1 with probability 1/2 and −1 w.p. 1/2. Now if we obtain sample S of size n,
then

VPACn (YX ) = inf
ŷ

sup
DX ,f∗∈F

ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

≥ inf
ŷ

Ef∗
[
ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

]
= inf

ŷ
Eε1,...,ε2n

ES:|S|=n
 1

2n

2n∑
j=1

11{ŷ(xj)6=εj}


= inf

ŷ
Eε1,...,ε2n

Ei1,...,in∼Unif[2n]

 1

2n

2n∑
j=1

11{ŷ(xj ;(xi1 ,εi1 ),...,(xin ,εin ))6=εj}


≥ 1

2n
inf
ŷ

Eε1,...,ε2n

Ei1,...,in∼Unif[2n]

 ∑
j /∈{i1,...,in}

11{ŷ(xj ;(xi1 ,εi1 ),...,(xin ,εin )) 6=εj}


=

1

2n
inf
ŷ

Ei1,...,in∼Unif[2n]

Eε1,...,ε2n
 ∑
j /∈{i1,...,in}

11{ŷ(xj ;(xi1 ,εi1 ),...,(xin ,εin )) 6=εj}


=

1

2n
inf
ŷ

Ei1,...,in∼Unif[2n]

Eε1,...,ε2n
 ∑
j /∈{i1,...,in}

Eεj
[

11{ŷ(xj ;(xi1 ,εi1 ),...,(xin ,εin ))6=εj}

]
=

1

2n
Ei1,...,in∼Unif[2n]

 ∑
j /∈{i1,...,in}

1

2

 =
1

4n
Ei1,...,in∼Unif[2n] [2n− |{i1, . . . , in}|] ≥

1

4

This shows that we need some restriction on F even for the realizable PAC setting. We cannot
learn arbitrary set of hypothesis, there is no free lunch.
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2 Empirical Risk Minimization and The Empirical Process

One algorithm/principle/ learning rule that is natural for statistical learning problems is the Em-
pirical Risk Minimizer (ERM) algorithm. That is pick the hypothesis from model class F that best
fits the sample, or in other words,:

ŷerm = argmin
f∈F

n∑
t=1

`(f(xt), yt)

Claim 2. For any Y, X , F and loss function ` : Y ×Y 7→ R (subject to mild regularity conditions
required for measurability), we have that

Vstatn (F) ≤ sup
D

ES
[
LD(ŷerm)− inf

f∈F
LD(f)

]
≤ sup

D
ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

Proof. Note that

ES [LD(ŷerm)]− inf
f∈F

LD(f)

= ES [LD(ŷerm)]− inf
f∈F

ES

[
1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
LD(ŷerm)− inf

f∈F

1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
LD(ŷerm)− 1

n

n∑
t=1

`(ŷerm(xt), yt)

]

since ŷerm ∈ F , we can pass to upper bound by replacing with supremum over all f ∈ F as

≤ ES sup
f∈F

[
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

This completes the proof.

• The question of whether the problem is learnable can now be understood by studying if,
uniformly over class F does average converge to expected loss ?

• For bounded losses, for any fixed f ∈ F , the difference of average loss and expected loss for
a given f ∈ F goes to 0 by Hoeffding bound.

• The difference of average loss and expected loss is an empirical process indexed by class F .
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2.1 Example Finite Class

For now and most of the course we will assume that the loss function ` is bounded in magnitude
by 1. Under this assumption, for any finite F we have the following bound.

Proposition 3. For any loss function bounded by 1,

ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]
≤ 8

√
log(n |F|)

n

Proof. For each f ∈ F , define the random variable, Zf as `(f(x), y) where (x, y) ∼ D. Notice that

E
[
Zf
]

= E [`(f(x), y)] and Zf1 , . . . , Z
f
n are iid copies of Zf . Hence by Hoeffding’s inequality, for

any ε > 0,

PS

(∣∣∣∣∣E [Zf]− 1

n

n∑
t=1

Zft

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−nε

2

2

)
Hence, by union bound,

PS

(
max
f∈F

∣∣∣∣∣E [Zf]− 1

n

n∑
t=1

Zft

∣∣∣∣∣ > ε

)
≤ 2|F| exp

(
−nε

2

2

)
Hence,

ES

[
max
f∈F

∣∣∣∣∣E [Zf
]
− 1

n

n∑
t=1

Zf
t

∣∣∣∣∣
]
≤ εPS

(
max
f∈F

∣∣∣∣∣E [Zf
]
− 1

n

n∑
t=1

Zf
t

∣∣∣∣∣ ≤ ε
)

+ 2PS

(
max
f∈F

∣∣∣∣∣E [Zf
]
− 1

n

n∑
t=1

Zf
t

∣∣∣∣∣ > ε

)

≤ ε+ 2PS

(
max
f∈F

∣∣∣∣∣E [Zf
]
− 1

n

n∑
t=1

Zf
t

∣∣∣∣∣ > ε

)

≤ ε+ 4|F| exp

(
−nε

2

2

)

Picking ε =

√
log(n|F|2)

n we can conclude the statement.

3 Infinite Hypothesis Class : first attempt, MDL

We saw how one can get bounds for the case when F has finite cardinality. How about the case
when F has infinite cardinality ? To start with, let us consider the case when F is a countable set.
One thing we can do is to try to be smarter with the application of union bound and Hoeffding
bound applied in the analysis of the finite case.

MDL Algorithm: The MDL learning rule picks the hypothesis in F as follows :

ŷmdl = argmin
f∈F

1

n

n∑
t=1

`(f(xt), yt) + 3

√
log(n/π2(f))

n

Interpretation : minimize empirical error while also ensuring that the hypothesis we pick has a
large prior π. Why is this learning rule appealing ?
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