
Machine Learning Theory (CS 6783)

Lecture 23: Analyzing Algorithms Via Stability

1 Recap of Algorithmic Stability

1. A learning algorithm ŷ is said to be Uniform Replace One (URO) stable with rate εstable if

1

n

n∑
t=1

∣∣∣`(ŷ(S), z′′t )− `(ŷ(S(t)), z′′t )
∣∣∣ ≤ εstable(n)

where S(t) is a sample identical to S except on the t’th entry where zt is replaced by z′t.

2. If a learning algorithm ŷ is URO stable with rate εstable then it generalizes at the same rate.

3. If a learning algorithm ŷ is URO stable with rate εstable and is an AERM with rate εAERM

then:
ES [L(ŷ(S))]− inf

f∈F
L(f) ≤ εstable(n) + εAERM(n)

4. If there exists an algorithm ŷ such that for any distribution D, for sample drawn form this
distribution:

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εrate(n)

then, there exists an algorithm ˆ̂y s.t.

(a) ˆ̂y is εstable(n) = 2√
n

URO stable

(b) ˆ̂y is an AERM with rate εAERM(n) = 2εrate(n
1/4) +O

(
1√
n

)
Thus existence of a stable AERM is both necessary and sufficient condition for statistical Learn-

ability.

2 Stability of ERM for Strongly convex objectives and more

Assumption 1. Assume that for sample S drawn, it is true that for any f ∈ F

ES

[
L̂S(f)−min

f∈F
L̂S(f)

]
≥ λ

2
ES

[∥∥∥f − f̂S∥∥∥2]
where f̂S = argmin

f∈F
L̂S(f)
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Note that if our functions were strongly convex then the above assumption would be true
deterministically. This is because, by strong convexity

L̂S(f̂S) ≤ L̂S(f) +∇L̂S(f̂S)>(f̂S − f)− λ

2
‖f̂S − f‖2

= L̂S(f)− λ

2
‖f̂S − f‖2

Rearranging we get the assumption. However, the assumption we need is milder than strong
convexity. For instance, one point strong convexity empirically would also imply the assumption.

Theorem 2. Assume that our loss is L-Lipschitzs and that Assumption 1 holds, then, for any t,

ES

[
sup
z

∣∣∣`(ŷ(S(t)), z)− `(ŷ(S), z)
∣∣∣] ≤ 4L2

λn

That is, the ERM algorithm is stable in expectation.

Proof.

L̂S(ŷ(S(t)))− L̂S(ŷ(S)) =
1

n

(
`(ŷ(S(t)), zt)− `(ŷ(S), zt)

)
+

1

n

∑
s∈[n]\{t}

(
`(ŷ(S(t), zs)− `(ŷ(S, zs)

)
=

1

n

(
`(ŷ(S(t)), zt)− `(ŷ(S), zt)

)
+

1

n

(
`(ŷ(S), z′t)− `(ŷ(S(t)), z′t)

)
+ L̂S(t)(ŷ(S(t)))− L̂S(t)(ŷ(S))

≤ 1

n

(
`(ŷ(S(t)), zt)− `(ŷ(S), zt)

)
+

1

n

(
`(ŷ(S), z′t)− `(ŷ(S(t)), z′t)

)
≤ 2L

n

∥∥∥ŷ(S(t))− ŷ(S)
∥∥∥

On the other hand, from our premise,

ES

[
L̂S(ŷ(S(t)))− L̂S(ŷ(S))

]
≥ λ

2

∥∥∥ŷ(S(t))− ŷ(S)
∥∥∥2

Hence we conclude that

ES

[∥∥∥ŷ(S(t))− ŷ(S)
∥∥∥] ≤ 4L

λn

Hence we conclude that:

ES

[
sup
z

∣∣∣`(ŷ(S(t)), z)− `(ŷ(S), z)
∣∣∣] ≤ 4L2

λn

In fact the above proof shows that uniform stability holds for strongly convex objectives.
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3 Stability of Stochastic Gradient Descent

Given a sample S, let us consider the multi-epoch SGD algorithm that uses a prefixed oder over
instances. That is: at iteration t,

ŷt+1 = ŷt − η∇`(ŷt, zt(mod n)+1)

In short, we will use Gt to denote the above update. That is ŷt+1 = Gt(ŷt).

Definition 1. We say that an update rule G is α expansive if:

sup
f,g∈F

‖G(f)−G(g)‖
‖f − g‖

≤ α

And we say that an update rule is σ-bounded if

sup
f∈F
‖f −G(f)‖ ≤ σ

Lemma 3. Consider two sequences of updates G1, . . . , GT and G′1, . . . , G
′
T with ŷt+1 = Gt(ŷt) and

ŷ′t+1 = G′t(ŷ
′
t). Let δt = ‖ŷt − ŷ′t‖ and assume that δ1 = 0 (that is both algorithms are initialized at

same point). Then we have:

δt+1 ≤
{

αδt if Gt = G′t is α-expansive
δt + 2σt if Gt, G

′
t are σ-bounded

Proof. if G′t = Gt is α expansive, then

δt+1 = ‖Gt(ŷt)−Gt(ŷ
′
t)‖ ≤ αδt

Also note that for the second case,

δt+1 = ‖Gt(ŷt)−G′t(ŷ′t)‖
≤ ‖Gt(ŷt)− ŷt + ŷ′t −G′t(ŷ′t)‖+ ‖ŷt − ŷ′t‖
≤ δt + ‖Gt(ŷt)− ŷt‖+ ‖ŷ′t −G′t(ŷ′t)‖
≤ δt + 2σ

Theorem 4. Assume that an algorithm uses update of the form ŷt+1 = Gt(ŷt) where Gt(f) =
f − η∇`(f, zt(mod n)+1). Now if the gradient updates Gt’s are α-expansive and σ-bounded, then for
any j ∈ [n],

sup
z

ES

[∣∣∣`(ŷT (S), z)− `(ŷT (S(j)), z)
∣∣∣] ≤ 4T

n
σ

Proof. We start using the Lipschitz property to note that:

sup
z

ES

[∣∣∣`(ŷT (S), z)− `(ŷT (S(j)), z)
∣∣∣] ≤ L ES

[
‖ŷT − ŷ′T ‖

]
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Let G1, . . . , GT be the sequence of updates using sample S in SGD and let G′1, . . . , G
′
T be thge

updates with S(j). Note that Gt 6= G′t only when t( mod n) + 1 = j and otherwise the updates are
identical. Hence, using the previous lemma (and crudely upper bounding),

E [δT ] ≤ ηT−T/n
(
δ1 +

2T

n
σ

)
+

2T

n
σ

Now if η ≤ 1 then we conclude that

E [δT ] ≤ 4T

n
σ

Hene we get stability of

sup
z

ES

[∣∣∣`(ŷT (S), z)− `(ŷT (S(j)), z)
∣∣∣] ≤ 4T

n
σ

Lemma 5. For any L-Lipschitz objective, SGD update is ηL bounded and if loss function is both
convex and H-smooth then update is 1-expansive as long as step size η ≤ 2/H

Proof. First note that for boundedness,

‖Gt(f)− f‖ = ‖η∇`(f, z)‖ ≤ ηL

Next note that

‖Gt(f)−Gt(g)‖2 = ‖g − f‖2 − 2η 〈∇`(f, zt)−∇`(g, zt), f − g〉+ η2‖∇`(f, zt)−∇`(g, zt)‖2

≤ ‖g − f‖2 −
(

2η

H
+ η2

)
‖∇`(f, zt)−∇`(g, zt)‖2

≤ ‖g − f‖2

where the second inequality is a consequence of smoothness + convexity.

Putting all this together, the stability of SGD for smooth convex loss is given by

sup
z

ES

[∣∣∣`(ŷT (S), z)− `(ŷT (S(j)), z)
∣∣∣] ≤ 4LηT

n
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