
Machine Learning Theory (CS 6783)

Lecture 21: General Statistical Learning and Algorithmic Stabiltity

1 Recap of Statistical Learning

Let Z = X × Y and consider the learning algorithm ŷ :
⋃∞
t=1Zt 7→ YX . We assume that sample

S = {z1, . . . , zn} drawn iid from fixed distribution D over Z. We are interested in algorithms that
guarantee that:

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εcons(n)

where for any h ∈ YX , L(h) = Ez∼D[`(h, z)] and εcons(n) goes to 0. We will consider a problem
learnable if there exists a uniform rate εcons(n) that goes to 0 with n and a learning algorithm such
that attains this upper bound.

2 Stability of a Learning Algorithm

Informally, an algorithm is said to be stable if replacing one sample from the training set does not
change outcome by much.

For a sample S, Let S(i) = {z1, . . . , zi−1, z′i, zi+1, . . . , zn} be obtained by replacing the i’th
sample by another z′i ∈ Z.

Definition 1. A learning algorithm ŷ is said to be Uniform Replace One (URO) stable with rate
εstable if for any sample S and any S(t)’s, and any z′′1 , . . . , z

′′
n,

1

n

n∑
t=1

∣∣∣`(ŷ(S), z′′t )− `(ŷ(S(t)), z′′t )
∣∣∣ ≤ εstable(n)

A key observation we make now is that if ŷ is URO stable with rate εstable then,∣∣∣∣∣ 1n
n∑
t=1

E
[
`(ŷ(S), z′t)− `(ŷ(S(t)), z′t)

]∣∣∣∣∣ ≤ εstable(n) (1)

which is got by simply replacing z′′t ;s by z′t’s and then using Jensen.

3 Stability + AERM implies Learnability

3.1 Stability Implies Generalization

A simple argument shows us that stable algorithms generalize well. That is:
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Lemma 1. If learning algorithm ŷ is URO stable with rate εstable then,∣∣∣∣∣ES
[
L(ŷ(S))− 1

n

n∑
t=1

`(ŷ(S), zt)

]∣∣∣∣∣ ≤ εstable(n)

That is it generalizes. The vice-versa is also true.

Proof. Note that:

ES

[
1

n

n∑
t=1

`(ŷ(S), zt)

]
=

1

n

n∑
t=1

ES
[
`(ŷ(S(t)), zt)

]
=

1

n

n∑
t=1

ES
[
`(ŷ(S(t)), z′t)

]
Also note that

ES [L(ŷ(S))] =
1

n

n∑
t=1

ES,z′1,...,z′n
[
`(ŷ(S), z′t)

]
Hence we conclude that∣∣∣∣∣ES

[
L(ŷ(S))− 1

n

n∑
t=1

`(ŷ(S), zt)

]∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
t=1

E
[
`(ŷ(S), z′t)− `(ŷ(S(t)), z′t)

]∣∣∣∣∣

3.2 A Stable Approximate ERM Algorithm has Low Excess Risk

An approximate ERM algorithm is one that returns a hypothesis whose empirical loss is close to
that of ERM.

Specifically we will say that a learning rule ŷ is an AERM with rate εAERM is for any n,

ES

[
1

n

n∑
t=1

`(ŷ(S), zt)− inf
f∈F

1

n

n∑
t=1

`(f, zt)

]
≤ εAERM(n)

If an algorithm is stable we already showed that it generalizes. If further we have that is is an
AERM then notice that

ES [L(ŷ(S))]− inf
f∈F

L(f) = ES [L(ŷ(S))]− inf
f∈F

ES

[
1

n

n∑
t=1

`(f, zt)

]

≤ ES [L(ŷ(S))]− ES

[
inf
f∈F

1

n

n∑
t=1

`(f, zt)

]

≤ ES [L(ŷ(S))]− ES

[
1

n

n∑
t=1

`(ŷ(S), zt)

]
+ εAERM(n)

≤ εstable(n) + εAERM(n)

Thus we have shown that any learning algorithm that is stable and minimizes training error
approximately, learns. In the following section we will show that the converse is also true.
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3.3 Characterization of Learnability Using Stability

We will now show that the converse is also true. That is, if the problem is learnable, or in other
words, if there is an algorithm ŷ such that for any distribution D, if we have that

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εrate(n)

then there has to be an algorithm that is both an AERM and is uniform RO stable. Specifically
we will prove the following theorem.

Theorem 2. If there exists an algorithm ŷ such that for any distribution D, for sample drawn
form this distribution:

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εrate(n)

then, there exists an algorithm ˆ̂y s.t.

1. ˆ̂y is εstable(n) = 2√
n
URO stable

2. ˆ̂y is an AERM with rate εAERM(n) = 2εrate(n
1/4) +O

(
1√
n

)
To prove this theorem we first introduce the following two lemma’s.

Lemma 3. If there exists an algorithm ŷ such that for any distribution D, for sample drawn form
this distribution:

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εrate(n)

then, there exists an algorithm ˆ̂y s.t.

1. ˆ̂y is 2/
√
n URO stable

2. ˆ̂y is such that for any distribution D, for sample drawn form this distribution:

ES
[
L(ˆ̂y(S))

]
− inf
f∈F

L(f) ≤ εrate(
√
n)

3. Further, we have that

ES

[∣∣∣∣∣L(ˆ̂y(S))− 1

n

n∑
t=1

`(ˆ̂y(S), zt)

∣∣∣∣∣
]
≤ O

(
1/
√
n
)

Proof. ˆ̂y(S) simply runs ŷ on just the first
√
n samples. That is, if S = {z1, . . . , zn} is the original

sample then let S̃ = {z1, . . . , z√n}. Then,

ˆ̂y(S) = ŷ(S̃)

Now note that by our premise on ŷ, since ˆ̂y runs ŷ on first
√
n samples,

ES
[
L(ˆ̂y(S))

]
− inf
f∈F

L(f) ≤ εrate(
√
n)
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as stated. Further, note that for any t >
√
n,

ˆ̂y(S) = ˆ̂y(S(t)) = ŷ(S̃)

since S̃ is only the first
√
n samples. Hence,

1

n

n∑
t=1

∣∣∣`(ˆ̂y(S), z′′t )− `(ˆ̂y(S(t)), z′′t )
∣∣∣ =

1

n

√
n∑

t=1

∣∣∣`(ˆ̂y(S), z′′t )− `(ˆ̂y(S(t)), z′′t )
∣∣∣

≤ 2
√
n

n
=

2√
n

Hence we conclude the second statement. The final statement can follow from either the fact that
most of the samples in S are not used by algorithm and hence its error on those samples are
unbiased estimate from D or we can simply use the result we proved earlier that stability which we
already have implies generalization and hence the result. Hence we conclude the proof.

Lemma 4. If there exists an algorithm ŷ such that for any distribution D, for sample drawn form
this distribution:

ES [L(ŷ(S))]− inf
f∈F

L(f) ≤ εrate(n),

then it is true that for any distribution D,

ES∼Dn

[∣∣∣∣∣ inf
f∈F

LD(f)− 1

n

n∑
t=1

`(f, zt)

∣∣∣∣∣
]
≤ 2εrate(n

1/4) +O

(
1√
n

)
Proof. Let σ1, . . . , σn1/4 be drawn iid from distribution Unif{[n]}. Define sample S′ = {zσ1 , . . . , zσn1/4

}
of size n1/4. Now note that

P [∃i, j s.t. σi = σj ] ≤
∑n1/4

i=1 (i− 1)

n
≤ n2/4

n
=

1√
n

Hence, we have that:

E
[
LD(ŷ(S′))

]
− inf
f∈F

LD(f) = Eσ1,...,σn1/4

[
ES
[
LD(ŷ(S′))

]]
− inf
f∈F

LD(f)

= Eσ1,...,σn1/4

[
ES
[
L(ŷ(S′))

]
|∃i, j s.t. σi = σj

]
P [∃i, j s.t. σi = σj ]

+ Eσ1,...,σn1/4

[
ES
[
LD(ŷ(S′))

]
|∀i, j, σi 6= σj

]
P [∀i, j, σi 6= σj ]− inf

f∈F
LD(f)

≤ 1√
n

+ Eσ1,...,σn1/4

[
ES
[
LD(ŷ(S′))

]
|∀i, j, σi 6= σj

]
− inf
f∈F

LD(f)

Now note that if there is no pair i, j such that σi = σj , then we can conclude that S′ is basically
a sample set drawn iid from D of size n1/4. Hence, using the premise about ŷ, we conclude that
under this conditioning,

Eσ1,...,σn1/4

[
ES
[
LD(ŷ(S′))

]
|∀i, j, σi 6= σj

]
− inf
f∈F

LD(f) ≤ εrate(n1/4)
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Hence we conclude that:

E
[
LD(ŷ(S′))

]
− inf
f∈F

LD(f) ≤ εrate(n1/4) +
1√
n

(2)

On the other hand, given sample S, consider the distribution S′ is drawn from. Note that
S′ is a sample set of size n1/4 that is drawn iid from distribution Unif{z1, . . . , zn}. Lets call this
distribution D̂(S). Note that, conditioned on sample S, the test loss w.r.t. this distribution is

LD̂(S)(f) =
1

n

n∑
t=1

`(f, zt)

That is, conditioned on a sample S, S′ is drawn from a distribution whose test loss is exactly
the empirical average over S or in other words the training loss w.r.t. S. Now from our premise,
conditioned on S, our learning algorithm when applied on S′ should yield an excess risk guarantee
of the form

ES′

[
LD̂(S)(ŷ(S′))|S

]
− inf
f∈F

LD̂(S)(f) ≤ εrate(n1/4)

But since LD̂(S)(f) = 1
n

∑n
t=1 `(f, zt) we have,

ES′

[
1

n

n∑
t=1

`(ŷ(S′), zt)|S

]
− inf
f∈F

1

n

n∑
t=1

`(f, zt) ≤ εrate(n1/4)

Hence taking expectation over S we have

E

[
1

n

n∑
t=1

`(ŷ(S′), zt)

]
− ES

[
inf
f∈F

1

n

n∑
t=1

`(f, zt)

]
≤ εrate(n1/4) (3)
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Now we are almost ready to combine Eq. 2 and 3. To do so we note that for any S′ of size n1/4,∣∣∣∣∣ 1n
n∑
t=1

`(ŷ(S′), zt)−
1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑
t∈S′

`(ŷ(S′), zt) +
∑
t∈S\S′

`(ŷ(S′), zt)

− 1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
∑

t∈(S\S′)c

`(ŷ(S′), zt)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑
t∈S\S′

`(ŷ(S′), zt)−
1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
∑

t∈(S\S′)c

`(ŷ(S′), zt)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑
t∈S\S′

`(ŷ(S′), zt)−
1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
≤ n1/4

n
+

∣∣∣∣∣∣ 1n
∑
t∈S\S′

`(ŷ(S′), zt)−
1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
≤ n1/4

n
+

(
1− |S \ S

′|
n

) ∣∣∣∣∣∣ 1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
≤ n1/4

n
+

(
1− n− n1/4

n

)
=

2

n3/4
(4)

In the above, we have used the fact that losses are bounded by 1 and triangle inequality. However,
note that ŷ(S′) only looks at samples in S′ and so samples in S \ S′ are fresh samples drawn from
distribution D not used by ŷ. Hence,

ES

∣∣∣∣∣∣LD(ŷ(S′))− 1

|S \ S′|
∑
t∈S\S′

`(ŷ(S′), zt)

∣∣∣∣∣∣
 ≤ 1√

S \ S′
≤ 1√

n− n1/4
(5)

The above is because if we condition on σ1, . . . , σn1/4 then S \ S′ can be seen as a sample drawn
fresh from D. And for any bounded random variables Xi’s drawn iid from a fixed distribution,

E

[∣∣∣∣∣E [X]− 1

m

m∑
i=1

Xi

∣∣∣∣∣
]

=
1

m
E

[
|
m∑
i=1

(Xi − E [X])|

]
≤ 1

m

√√√√ m∑
i=1

E [(Xi − E [X])2] ≤ 1√
m

Hence combining Eq. 4 and Eq. 5 we conclude that:

ES

[∣∣∣∣∣LD(ŷ(S′))− 1

n

n∑
t=1

`(ŷ(S′), zt)

∣∣∣∣∣
]
≤ 2

n3/4
+

1√
n− n1/4

Using this we can combine Eqns. 2 and 3 and obtain that:

ES∼Dn

[∣∣∣∣∣ inf
f∈F

LD(f)− 1

n

n∑
t=1

`(f, zt)

∣∣∣∣∣
]
≤ 2εrate(n

1/4) +
1√
n

+
2

n3/4
+

1√
n− n1/4
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Finally we are ready to prove Theorem 2.

Proof of Theorem 2. First from Lemma 3 we can conclude that ˆ̂y described in the Lemma is URO
stable with the prescribed rate. Now also note that by the same lemma, the prescribed algorithm
generalizes, that is

ES

[
L(ˆ̂y(S))− 1

n

n∑
t=1

`(ˆ̂y(S), zt)

]
≤ 1√

n

But then, from previous lemma we have that

inf
f∈F

L(f)− ES

[
inf
f∈F

n∑
t=1

`(f, zt)

]
≤ 2εrate(n

1/4) +O

(
1√
n

)
Hence we can conclude that

ES

[
1

n

n∑
t=1

`(ˆ̂y(S), zt)− inf
f∈F

n∑
t=1

`(f, zt)

]
≤ 2εrate(n

1/4) +O

(
1√
n

)
which concludes the proof.
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