
Machine Learning Theory (CS 6783)

Lecture 2 : Learning Frameworks, Minimax Rates, No Free Lunch Theorem and ERM

1 Setting up learning problems

1. X : instance space or input space
Examples:

• Computer Vision: Raw M ×N image vectorized X = [0, 255]M×N , SIFT features (typi-
cally X ⊆ Rd)

• Speech recognition: Mel Cepstral co-efficients X ⊂ R12×length

• Natural Language Processing: Bag-of-words features (X ⊂ Ndocument size), n-grams

2. Y: Outcome space, label space
Examples: Binary classification Y = {±1}, multiclass classification Y = {1, . . . ,K}, regres-
sion Y ⊂ R)

3. ` : Y × Y 7→ R: loss function (measures prediction error)
Examples: Classification `(y′, y) = 11{y′ 6=y}, Support vector machines `(y′, y) = max{0, 1 −
y′ · y}, regression `(y′, y) = (y − y′)2

4. F ⊂ YX : Model/ Hypothesis class (set of functions from input space to outcome space)
Examples:

• Linear classifier: F = {x 7→ sign(f>x) : f ∈ Rd}
• Linear SVM: F = {x 7→ f>x : f ∈ Rd, ‖f‖2 ≤ R}
• Neural Netoworks (deep learning): F = {x 7→ σ(Woutσ(WKσ(. . . σ(W2(W1σ(Winx)))))}

where σ is some non-linear transformation (Eg. ReLU)

Learner observes sample: S = (x1, y1), . . . , (xn, yn)

Learning Algorithm : (forecasting strategy, estimation procedure)

ŷ : X ×
∞⋃
t=1

(X × Y)t 7→ Y

Given new input instance x the learning algorithm predicts ŷ(x, S). When context is clear (ie.
sample S is understood) we will fudge notation and simply use notation ŷ(·) = ŷ(·, S). ŷ is the
predictor returned by the learning algorithm.
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Example: linear SVM Learning algorithm solves the optimization problem:

wSVM = argmin
w

n∑
t=1

max{0, 1− ytw>xt}+ λ‖w‖

and the predictor is ŷ(x) = ŷ(x, S) = w>SVMx

1.1 PAC framework

Y = {±1}, `(y′, y) = 11{y′ 6=y}

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes
Px∼DX

(ŷ(x) 6= f∗(x))

1.2 Non-parametric Regression

Y ⊆ R, `(y′, y) = (y′ − y)2

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt) + εt where εt ∼ N(0, σ)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
=: ‖ŷ − f∗‖L2(DX)

1.3 Statistical Learning (Agnostic PAC)

Generic X , Y, ` and F

Samples generated as (x1, y1), . . . , (xn, yn) ∼ D where D is some unknown distribution over X ×Y.
Goal: Find ŷ that minimizes

E(x,y)∼D [`(ŷ(x), y)]− inf
f∈F

E(x,y)∼D [`(f(x), y)]

For any mapping g : X 7→ Y we shall use the notation LD(g) = E(x,y)∼D [`(g(x), y)] and so our goal
is to minimize:

LD(ŷ)− inf
f∈F

LD(f)

Remarks: ŷ is a random quantity as it depends on the sample
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2 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?

Minimax Rate = “Best Possible Guarantee”

PAC framework:

VPAC
n (F) := inf

ŷ
sup

DX ,f∗∈F
ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

A problem is “PAC learnable” if VPAC
n → 0. That is, there exists a learning algorithm that

converges to 0 expected error as sample size increases.
Non-parametric Regression:

VNR
n (F) := inf

ŷ
sup

DX ,f∗∈F
ES:|S|=n

[
Ex∼DX

[
(ŷ(x)− f∗(x))2

]]
A statistical estimation problem is consistent if VNR

n → 0.
Statistical learning:

Vstatn (F) := inf
ŷ

sup
D

ES:|S|=n

[
LD(ŷ)− inf

f∈F
LD(f)

]
A problem is “statistically learnable” if Vstatn → 0.

A statement in expectation implies statement in high probability by Markov inequality but more
generally one can also easily convert to exponentially high probability.

2.1 Comparing the Minimax Rates

Proposition 1. For any class F ⊂ {±1}X ,

4VPAC
n (F) ≤ VNR

n (F) ≤ Vstatn (F)

and for any F ⊂ RX ,
VNR
n (F) ≤ Vstatn (F)

That is, if a class is statistically learnable then it is learnable under either the PAC model or
the statistical estimation setting

Proof. Let us start with the PAC learning objective. Note that, 11{ŷ(x)6=f∗(x)} = 1
4(ŷ(x)− f∗(x))2.

Now note that,

Px∼Dx (ŷ(x) 6= f∗(x)) = Ex∼DX

[
11{ŷ(x)6=f∗(x)}

]
=

1

4
Ex∼DX

[
(ŷ(x)− f∗(x))2

]
Thus we conclude that

4VPAC
n (F) ≤ VNR

n (F)

Now to conclude the proposition we prove that the minimax rate for non-parametric regression is
upper bounded by minimax rate for the statistical learning problem (under squared loss).
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To this end, in NR we assume that y = f∗(x) + ε for zero-mean noise ε. Now note that, Now
note that, for any ŷ,

(ŷ(x)− f∗(x))2 = (ŷ(x)− y − ε)2

= (ŷ(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + (f∗(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− y)

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− f∗(x)− ε)
= (ŷ(x)− y)2 − (f∗(x)− y)2 − 2ε(ŷ(x)− f∗(x))

Taking expectation w.r.t. y (or ε) we conclude that,

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
= E(x,y)∼D

[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
− Ex∼DX

[Eε [2ε(ŷ(x)− f∗(x))]]

= E(x,y)∼D
[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
= LD(ŷ)− inf

f∈F
LD(f)

where in the above distribution D has marginal DX over X and the conditional distribution
DY |X=x = N(f∗(x), σ). Hence we conclude that

VNR
n (F) ≤ Vstatn (F)

when we consider statistical learning under square loss.
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