
Machine Learning Theory (CS 6783)

Lecture 17: Relaxations for Online Learning

1 Relaxations

Basic idea: Let us define relaxation Reln as any mapping Reln :
⋃n
t=0X t × Yt 7→ R. Further,

we say that a relaxation is admissible if it satisfies the following two conditions.
1. Dominance condition :

−φ((x1, y1), . . . , (xn, yn)) ≤ Reln (x1:n, y1:n)

2. Final condition :
Reln (·) ≤ 0

3. Admissibility condition : For any x1, . . . , xt ∈ X and any y1, . . . , yt−1 ∈ Y,

Reln (x1:t−1, y1:t−1) ≥ inf
qt∈∆(Y)

sup
yt∈Y
{Eŷt∼qt [`(ŷt, yt)] + Reln (x1:t, y1:t)}

= inf
qt∈∆(Y)

sup
pt∈∆(Y)

Eyt∼pt {Eŷt∼qt [`(ŷt, yt)] + Reln (x1:t, y1:t)}

= sup
pt∈∆(Y)

inf
qt∈∆(Y)

Eŷt∼qtEyt∼pt [`(ŷt, yt) + Reln (x1:t, y1:t)]

= sup
pt∈∆(Y)

{
inf
ŷt∈Y

Eyt∼pt [`(ŷt, yt)] + Eyt∼pt [Reln (x1:t, y1:t)]

}
Proposition 1. If Reln is any admissible relaxation, then if we use the learning algorithm that at
time t, given xt produces qt(xt) = argmin

q∈∆(Y)
supyt {Eŷt∼qt [`(ŷt, yt)] + Reln (x1:t, y1:t)}, then,

1

n

n∑
t=1

Eŷt∼qt [`(ŷt, yt)] ≤ 1
nφ((x1, y1), . . . , (xn, yn))

Proof. Assume Reln is any admissible relaxation. Also let qt’s be obtained by as described above.
Then, by dominance condition,

n∑
t=1

Eŷt∼qt(xt) [`(ŷt, yt)]− φ((x1, y1), . . . , (xn, yn))

≤
n∑
t=1

Eŷt∼qt [`(ŷt, yt)] + Reln (x1:n, y1:n)

≤
n−1∑
t=1

Eŷt∼qt [`(ŷt, yt)] + sup
yt∈Y

{
Eŷn∼qn(xn) [`(ŷn, yn)] + Reln (x1:n, y1:n)

}
=

n−1∑
t=1

Eŷt∼qt [`(ŷt, yt)] + inf
qn∈∆(Y)

sup
yt∈Y
{Eŷn∼q [`(ŷn, yn)] + Reln (x1:n, y1:n)}

1



by admissibility condition,

≤
n−1∑
t=1

Eŷt∼qt [`(ŷt, yt)] + Reln (x1:n−1, y1:n−1)

≤ . . . ≤ Reln (·) ≤ 0

Dividing through by n we conclude the result.

2 Sequential Rademacher Relaxation

Just like we defined Rademacher complexity for statistical learning, one can define an online version
of it called sequential Rademacher Complexity. Specifically, the sequential Rademacher complexity
of a function class G ⊂ RZ is defined as:

Rsqn (G) :=
1

n
sup
z

Eε

[
sup
g∈G

n∑
t=1

εtg(zt(ε1, . . . , εt−1))

]

where z is a Z valued binary tree of depth n where the nodes at level t can be defined by mapping
zt : {±1}t−1 7→ Z.

Pictorially, we can view the Rademacher complexity as :

Definition 1. Define the sequential Rademacher relaxation as

Radn (x1:t, y1:t) := sup
x,y

E
εt+1:n

sup
f∈F

[
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))−
t∑

s=1

`(f(xs), ys)

]
−2nRsqn (`◦F)

where x above is supremum over X valued tree of depth n− t and similarly y is a Y-valued tree of
depth n− t.

Remark 2.1. I will leave this as an exercise that you can check. Pretty much all the exam-
ples of function classes F for which we obtained upper bounds on the statistical Rademacher
complexity, we can obtain same upper bounds on the sequential one. This is because the term∑n

t=1 εt`(f(xt(ε1:t−1)),yt(ε1:t−1)) is a martingale difference sequence (each term in the sum has

2



conditional expectation of 0) and almost all the upper bounds we proved, we only needed that the
inner term was a martingale difference sequence and not sum of iid zero mean variables. The only
exception to this is the example of learning thresholds. If F ⊆ {±1}[0,1] is the class of all thresholds
such that every point to the right of the threshold is labeled −1 and to the left is labeled as +1, then
we can see that for this class, Rsqn (` ◦F) = 1, while statistical Rademacher complexity is 1/

√
n. To

see this consider the following tree:

For this tree, we have the property that on every path, some threshold attains the label of signs on
that path implies that the sequential Rademacher complexity is 1. However VC dimension for this
class is 1 and so statistical Rademacher complexity is 1/

√
n

Claim 2. Radn is an admissible relaxation. Further using the qt corresponding to this relaxation
one get that

1

n

n∑
t=1

Eŷt∼qt [`(ŷt, yt)] ≤
1

n
inf
f∈F

n∑
t=1

`(f(xt), yt) + 2Rsqn (` ◦ F)

Proof. First note that the φ function in this case is simply:

φ((x1, y1), . . . , (xn, yn)) = inf
f∈F

n∑
t=1

`(f(xt), yt) + 2nRsqn (` ◦ F)

Now, as for Dominance condition, note that,

Radn (x1:n, y1:n) = sup
f∈F

[
−

n∑
s=1

`(f(xs), ys)

]
− 2nRsqn (` ◦ F)

= − inf
f∈F

n∑
t=1

`(f(xt), yt)− 2nRsqn (` ◦ F)

= −φ((x1, y1), . . . , (xn, yn))

Next, we check the final condition. Note that:

Radn (·) = sup
x,y

E
ε1:n

sup
f∈F

[
2

n∑
s=1

εs`(f(xs(ε1:s−1)),ys(ε1:s−1))

]
− 2nRsqn (` ◦ F) = 0

3



Now to check admissibility, note that

sup
pt∈∆(Y)

{
inf
ŷt∈Y

Eyt∼pt [`(ŷt, yt)] + Eyt∼pt [Radn (x1:t, y1:t)]

}

= sup
pt∈∆(Y)

{
inf
ŷt∈Y

Ey′t∼pt [`(ŷt, y
′
t)]

+ Eyt∼pt

[
sup
x,y

E
εt+1:n

sup
f∈F

[
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))−
t∑

s=1

`(f(xs), ys)

]]
− 2nRsqn (` ◦ F)

}

≤ sup
pt∈∆(Y)

{
Eyt∼pt sup

x,y
Eεt+1,...,εn sup

f∈F

{
Ey′t∼pt [`(f(xt), y

′
t)]

+ 2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))−
t∑

s=1

`(f(xs), ys)

}}
− 2nRsqn (` ◦ F)

≤ sup
pt∈∆(Y)

Eyt,y′t∼pt sup
x,y

Eεt+1,...,εn sup
f∈F

{
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ (`(f(xt), y
′
t)− `(f(xt), yt))−

t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

= sup
pt∈∆(Y)

Eyt,y′t∼ptEεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ εt (`(f(xt), y
′
t)− `(f(xt), yt))−

t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

≤ sup
yt,y′t∈Y

Eεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ εt (`(f(xt), y
′
t)− `(f(xt), yt))−

t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

≤ sup
y′t∈Y

Eεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
n∑

s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ εt`(f(xt), y
′
t)−

1

2

t−1∑
s=1

`(f(xs), ys)

}

+ sup
yt∈Y

Eεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
n∑

s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

− εt`(f(xt), y
′
t)−

1

2

t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

4



= 2 sup
yt∈Y

Eεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
n∑

s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ εt`(f(xt), yt)−
1

2

t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

≤ sup
xt∈X

sup
yt∈Y

Eεt sup
x,y

Eεt+1,...,εn sup
f∈F

{
2

n∑
s=t+1

εs`(f(xs−t(εt+1:s−1)),ys−t(εt+1:s−1))

+ εt`(f(xt), yt)−
t−1∑
s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

Put the xt that achieves the supremum as the root of a new tree of depth n − t + 1 and its left sub-tree is
the x+ tree that attains supremum when εt = −1 and right sub-tree is the one that attains supremum when
εt = −1. Similarly for the y’s, hence,

= sup
x,y

Eεt:n sup
f∈F

{
2

n∑
s=t

εs`(f(xs−t(εt:s−1)),ys−t(εt:s−1))−
t∑

s=1

`(f(xs), ys)

}
− 2nRsqn (` ◦ F)

= Radn (x1:t−1, y1:t−1)

This shows admissibility. From the earlier proposition and dividing throughout by n, we conclude
the final statement.

3 The Recipe

1. Write down sequential Rademacher relaxation for the given problem (in a malleable form).

2. Move to upper bound Reln such that ∀t ∈ [n] and for all x1:t , y1:t,

Radn (x1:t, y1:t) ≤ Reln (x1:t, y1:t)

(notice this ensures that initial condition is satisfied, this is half the work).

5



3. Two equivalent ways of checking admissibility condition, ∀xt ∈ X :

inf
qt

sup
yt
{Eŷt∼qt [`(ŷt, yt)] + Reln (x1:t, y1:t)} ≤ Reln (x1:t−1, y1:t−1)

sup
pt

{
inf
ŷt∈Y

Eyt∼pt [`(ŷt, yt)] + Eyt∼pt [Reln (x1:t, y1:t)]

}
≤ Reln (x1:t−1, y1:t−1)

4. Algorithm: solve qt(xt) = argmin
qt∈∆(Y)

supyt {Eŷt∼qt [`(ŷt, yt)] + Reln (x1:t, y1:t)}

4 Online Linear Optimization: Euclidean space

F = {f : ‖f‖2 ≤ 1}, D = {∇ : ‖∇‖2 ≤ 1}
Step 1

Radn (x1:t, y1:t) = sup
∇

Eεt+1,...,εn sup
f∈F

[〈
f , 2

n∑
s=t+1

εs∇s−t(εt+1:s−1))−
t∑

s=1

∇s

〉]

= sup
∇

Eεt+1,...,εn

∥∥∥∥∥2
n∑

s=t+1

εs∇s−t(εt+1:s−1))−
t∑

s=1

∇s

∥∥∥∥∥
2

= sup
∇

Eεt+1,...,εn

√√√√∥∥∥∥∥2
n∑

s=t+1

εs∇s−t(εt+1:s−1))−
t∑

s=1

∇s

∥∥∥∥∥
2

2

Step 2

Radn (∇1:t) ≤ sup
∇

√√√√Eεt+1,...,εn

∥∥∥∥∥2
n∑

s=t+1

εs∇s−t(εt+1:s−1))−
t∑

s=1

∇s

∥∥∥∥∥
2

2

= sup
∇

√√√√∥∥∥∥∥
t∑

s=1

∇s

∥∥∥∥∥
2

2

+ Eεt+1,...,εn [Cross terms] + 4Eεt+1,...,εn

[
n∑

s=t+1

‖∇s−t(εt+1:s−1))‖22

]

= sup
∇

√√√√∥∥∥∥∥
t∑

s=1

∇s

∥∥∥∥∥
2

2

+ 4Eεt+1,...,εn

[
n∑

s=t+1

‖∇s−t(εt+1:s−1))‖22

]

≤

√√√√∥∥∥∥∥
t∑

s=1

∇s

∥∥∥∥∥
2

2

+ 4(n− t) =: Reln (∇1:t)

6



Step 3 & 4

inf
ft

sup
∇t

{〈ft,∇t〉+ Reln (∇1:t)} = inf
ft

sup
∇t

〈ft,∇t〉+

√√√√∥∥∥∥∥
t∑

s=1

∇s

∥∥∥∥∥
2

2

+ 4(n− t)


= inf

ft
sup
∇t

〈ft,∇t〉+

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 2

〈
t−1∑
s=1

∇s,∇t

〉
+ ‖∇t‖22 + 4(n− t)


≤ inf

ft
sup
∇t

〈ft,∇t〉+

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 2

〈
t−1∑
s=1

∇s,∇t

〉
+ 4(n− t+ 1)


Now in the above note that the second term depends on ∇t only through

〈∑t−1
s=1∇s,∇t

〉
. This

means that if ft has any component orthogonal to
∑t−1

s=1∇s then ∇t can gain on the first term with-
out loosing on the second term (as the component of ∇t that increases first term is perpendicular
to the second term). Hence ft has to be of form ft = −α

∑t−1
s=1∇s for some positive α. Hence

inf
ft

sup
∇t

{〈ft,∇t〉+ Reln (∇1:t)}

= inf
α>0

sup
∇t

−α
〈
t−1∑
s=1

∇s,∇t

〉
︸ ︷︷ ︸

β

+

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 2

〈
t−1∑
s=1

∇s,∇t

〉
+ 4(n− t+ 1)


≤ inf

α>0
sup
β∈R

−αβ +

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 2β + 4(n− t+ 1)


Taking derivative to optimize over β for a given α we see that β is optimized when,

−α+
1√∥∥∥∑t−1

s=1∇s
∥∥∥2

2
+ 2β + 4(n− t+ 1)

= 0

Hence if we use

α =
1√∥∥∥∑t−1

s=1∇s
∥∥∥2

2
+ 4(n− t+ 1)

then clearly the corresponding β that maximizes is at β = 0. Hence,

inf
ft

sup
∇t

{〈ft,∇t〉+ Reln (∇1:t)} ≤ sup
β∈R

−
β√∥∥∥∑t−1

s=1∇s
∥∥∥2

2
+ 4(n− t+ 1)

+

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 2β + 4(n− t+ 1)


≤

√√√√∥∥∥∥∥
t−1∑
s=1

∇s

∥∥∥∥∥
2

2

+ 4(n− t+ 1) = Reln (∇1:t−1)

7



Algorithm is given by

ft = −α
t−1∑
s=1

∇s = −
∑t−1

s=1∇s√∥∥∥∑t−1
s=1∇s

∥∥∥2

2
+ 4(n− t+ 1)

Notice that we don’t need any projection, the solutions automatically have norm at most 1. The
final guarantee we get is

E [Regn] ≤ 1

n
Reln (·) =

1

n

√
4n =

2√
n

This gives an alternative for gradient descent and can be used for online convex optimization. For
other norms, as long as the dual norm squared is a strongly-smooth function (or equivalently the
norm squared is a strongly convex function) the same technique can be used where the equality
due to Pythagorus theorem in the proof is replaced by inequality due to strong smoothness of
norm squared. This can also be viewed as a modified, projection free form of gradient descent
with automatically tuned step-sizes. The key thing to note is that the step size depends on past
gradients and so if sequence is nicer, we take stronger steps.

5 Other Examples

1. Exponential weights style algorithm:

Reln (x1:t, y1:t) = inf
λ>0

 1

λ
log

∑
f∈F

exp

(
−λ

t∑
s=1

`(f(xs), ys)

)+ 2λ(n− t)


2. Follow the Regularized Leader: Strongly convex R

Reln (∇1:t) = inf
λ>0

{
R2

λ
− inf
f∈F

{
t∑

s=1

〈f,∇s〉+
1

λ
R(f)

}
+ 2λ(n− t)

}

3. Mirror Descent

Reln (∇1:t) = inf
η>0

{
sup
f∈F

{
t∑
i=1

〈f ,−∇i〉+
1

η
∆R(f |∇R(ŷt)− η∇t)

}
+ 2η(n− t)

}

4. Also algorithms like follow the perturbed leader.

5. Fast rates can be obtained using this recipe by starting from an offset version of sequential
Rademacher relaxation instead.

8


