
Machine Learning Theory (CS 6783)

Lecture 11 : Online Games

1 Recap: statistical learning

1. For any statistical learning problem we have,

ES
[
LD(ŷerm)− inf

f∈F
LD(f)

]
≤ 2 ES

[
R̂S(` ◦ F)

]
≤ 2L ES

[
R̂S(F)

]
2. Dudley Integral bound:

R̂S(F) ≤ D̂S(F) := inf
α>0

{
4α+ 12

∫ 1

α

√
logN2(F , β;x1, . . . , xn)

n
dβ

}
≤ 4

n
+ log2(n)R̂S(F)

3. Supervised Learning with absolute loss: For any k ∈ N,

Vpropern (F) ≥ Rkn(F)− 1

k
Rn(F) and V improper

n (F) ≥ Rkn(F)− 1

k

4. Using k = 2 and the fact that if F has at least 2 functions that vary on some data point by
more than a constant then, Rademacher complexity is at least 1/

√
n, we can conclude that:

Vpropern (F) ≥ 0.29Rn(F)

2 Mind Reading Machine

Most of you guys would have played games like Rock-Paper-Scissors and Matching-Pennies while
growing up. The excitement of these games is in trying to predict the future — the next choice of
the opponent. Of course, if opponent is random, there is no good strategy, and the game becomes
boring. This boring strategy is in fact minimax optimal. However, it is the subtle cues from the
other player and their past behavior that make the game interesting. Does the opponent tend to
play “Rock” after losing with “Scissors”?, do they try to play more heads than tails?, does the
opponent tend to stick with the same choice after winning a round? We try to notice such patterns
in behavior to tip the balance in our favor.

Can we program a computer to beat humans at these games? sThis question was asked by
Claude Shannon and David Hagelbarger in the 1950’s. While at AT&T Bell Labs, they each built a
machine—aptly called “mind reader”—to play the game of Matching-Pennies, According to various
accounts, the machines were able to predict the sequence of heads/tails entered by an untrained
human markedly better than random guess, picking up on a variety of patterns of the past play.

Deviating from the standard approach of time-series analysis, we will (typically) place no prob-
abilistic assumptions on the mechanism generating the sequences. Our results will be roughly in
the form

1

Figure 1: Shannon’s Mind Reading Machine, MIT Museum. (Source: http://william-

poundstone.com/blog/2015/7/30/how-i-beat-the-mind-reading-machine)

for any sequence,

number of mistakes made by forecaster ≤ φ(sequence).

A function φ controlling the number of mistakes is a measure of “complexity” or “predictiveness”
of the sequence. It captures our prior belief of what kinds of patterns might appear. For the
Penny-Matching game, φ may be related to the frequency of heads vs tails, or more fine-grained
statistics, such as predictability of the next outcome based on the last three outcomes. In fact,
Shannon’s mind reading machine was based on only 8 such states. Which φ can one choose? How
to develop an efficient algorithm for a given φ? These are the main topics of this book.

We can contrast the “individual sequence” approach described above with an approach based
on stochastic modeling. In the latter, for any sequence would be typically replaced with for

most sequences (or, with high probability). However, “for most” is calculated according to
the assumed probability model; if the assumption is violated, the result can become significantly
weaker. On the other hand, the individual sequence statements are naturally robust to model
misspecification. In the age of dynamic and streaming data with a large degree of intricate depen-
dencies, the individual sequence approach appears to be desirable. On the downside, the approach
presented in this paper is only focused on prediction rather than inference or estimation. Indeed,
estimation requires the assumption that the estimand is there. Our prediction goal, however, is not
based on a probabilistic model.

3 Bit Prediction

Claim 1. There exists a randomized prediction strategy that ensures that

E [Regn] ≤ 1

2n
Eε

[
sup
f∈F

n∑
t=1

ftεt

]

To prove the above claim we first prove this following lemma, a result by Thomas Cover.

Lemma 2 (T. Cover’65). Let φ : {±1}n 7→ R be a function such that, for any i, and any

2

y1, . . . , yi−1, yi+1, . . . , yn,

|φ(y1, . . . , yi−1,+1, yi+1, . . . , yn)− φ(y1, . . . , yi−1,−1, yi+1, . . . , yn)| ≤ 1

n
, (stability condition)

then, there exists a randomized strategy such that for any sequence of bits,

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

if and only if,

Eεφ(ε1, . . . , εn) ≥ 1

2

and further, the strategy achieving this bound on expected error is given by:

qt =
1

2
+
n

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

Proof of Lemma.
We start by proving that if there exists an algorithm that guarantees that

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

then, Eε [φ(ε1, . . . , εn)] ≥ 1/2.

To see this, note that the regret bound implies that

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}]− φ(y1, . . . , yn) ≤ 0

for any y1, . . . , yn. Now simply let the adversary pick yt = εt as a Rademacher random variable.
Thus, taking expectation, this implies that,

0 ≥ 1

n

n∑
t=1

Eŷt∼qt [Eεt1{ŷt 6= εt}]− Eεφ(ε1, . . . , εn) =
1

2
− Eεφ(ε1, . . . , εn)

Next we prove that if Eεφ(ε1, . . . , εn) ≥ 1
2 , then ∃ strategy s.t. 1

n

∑n
t=1 Eŷt∼qt [1{ŷt 6= yt}] ≤

φ(y1, . . . , yn).

The basic idea is to prove this statement starting from n and moving backwards. Say we have
already played rounds up until round n − 1 and have observed y1, . . . , yn−1. Now let us consider
the last round. On the last round we use,

qn =
1

2
+
n

2
φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1)

3

Now note that if yn = +1 then Eŷn∼qn
[

11{ŷn 6=yn}
]

= Eŷn∼qn
[

11{ŷn=−1}
]

= 1 − qn and if yn = −1
then Eŷn∼qn

[
11{ŷn 6=yn}

]
= qn and hence for the choice of qn above, we can write

Eŷn∼qn
[

11{ŷn 6=yn}
]

= 1
2n −

yn
2 (φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))

Plugging in the above, note that for any yn (possibly chosen adversarially looking at qn), we have,

1
nEŷn∼qn

[
11{ŷn 6=yn}

]
− φ(y1, . . . , yn) (1)

=
1

2n
− yn

2
(φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))− φ(y1, . . . , yn)

=
1

2n
− 1

2
(φ(y1, . . . , yn−1,−1) + φ(y1, . . . , yn−1,+1))

=
1

2n
− Eεnφ(y1, . . . , yn−1, εn) (2)

Now recursively we continue just as above for n − 1 to 0. Let us do the n − 1th step and the
rest follows. To this end, note that just as earlier, if yn−1 = +1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
=

Eŷn−1∼qn−1

[
11{ŷn−1=−1}

]
= 1 − qn−1 and if yn−1 = −1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= qn−1 and

hence for the choice of qn−1 = 1
2n + n

2 Eεn [φ(y1, . . . , yn−2,−1, εn)− φ(y1, . . . , yn−2,+1, εn)], we have

1
nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= 1

2n −
yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))

Thus we can conclude that,

1
nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
+ 1

nEŷn∼qn
[

11{ŷn 6=yn}
]
− φ(y1, . . . , yn)

=
1

2n
+ 1

nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
− Eεnφ(y1, . . . , yn−1, εn) (From Eq.2)

=
2

2n
− yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))− Eεnφ(y1, . . . , yn−1, εn)

=
2

2n
− 1

2
(Eεnφ(y1, . . . , yn−2,+1, εn) + Eεnφ(y1, . . . , yn−2,−1, εn))

=
2

2n
− Eεn−1,εnφ(y1, . . . , yn−2, εn−1, εn)

Proceeding in similar way we conclude that,

1
n

n∑
t=1

Eŷt∼qt
[

11{ŷt 6=yt}
]
− φ(y1, . . . , yn) ≤ n

2n
− Eε1,...,εnφ(ε1, . . . , εn) =

1

2
− Eε1,...,εnφ(ε1, . . . , εn)

Hence, if Eε1,...,εnφ(ε1, . . . , εn) ≥ 1/2 then we can conclude that, 1
n

∑n
t=1 Eŷt∼qt

[
11{ŷt 6=yt}

]
≤ φ(y1, . . . , yn)

as desired.

Hence we conclude the proof of this lemma.

4

4 Application: Binary Node Classification

Let G = (V,E) be a known undirected graph representing a social network. At each time step t,
a user in the network opens her Facebook page, and the system needs to decide whether to classify
the user as type “−1” or “+1”, say, in order to decide on an advertisement to display. We assume
here that the feedback on the “correct” type is revealed to the system after the prediction is made.
Suppose we have a hunch that the type of the user (+1 or −1) is correlated with the community
to which she belongs. For simplicity, suppose there are two communities, more densely connected
within than across. To capture the idea of correlating communities and labels, we set φ to be
small on labelings that assign homogenous values within each community. We make the following
simplifying assumptions: (i) |V | = n, (ii) we only predict the label of each node once, and (iii) the
order in which the nodes are presented is fixed (this assumption is easily removed). Smoothness of
a labeling f ∈ {±1}n with respect to the graph may be computed via

Cut(f) =
∑

(u,v)∈E

11{fu 6=fv} =
1

4

∑
(u,v)∈E

(fu − fv)2 = f>Lf (3)

where L = D − A, the diagonal matrix D contains degrees of the nodes, and A is the adjacency
matrix and fv ∈ {±1} is the label in f that corresponds to vertex v ∈ V . This function in (3)
counts the number of disagreements in labels at the endpoints of each edge. The value is also known
as the size of the cut induced by f (the smallest possible being MinCut). As desired, the function
in (3) gives a smaller value to the labelings that are homogenous within the communities.

Unfortunately, the function Cut(f) is not stable. Further, the cut size is n− 1 for a star graph,
where n− 1 nodes, labeled as +1, are connected to the center node, labeled as −1. The large value
of the cut does not capture the simplicity of this labeling, which is only one bit away from being a
constant +1. Instead, we opt for the indirect definition:

Fκ =
{
f ∈ {±1}n : f>Lf ≤ κ

}
(4)

for κ ≥ 0, and then set

φ(y1, . . . , yn) = inf
f∈Fκ

1

n

n∑
t=1

11{ft 6=yt} +
1

2n
Eε

[
sup
f∈Fκ

n∑
t=1

ftεt

]
(5)

Parameter κ should be larger than the value of MinCut, for otherwise the set Fκ is empty. This
gives an interesting algorithm for the prediction problem What does this look like?

5

Well we want to use the strategy

qt =
1

2
+
n

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

=
1

2
+
n

2
Eεt+1,...,εn

[
inf
f∈Fκ

 1

n

t−1∑
j=1

11{fj 6=yj} + 11{ft 6=−1} +

n∑
j=t+1

11{fj 6=εj}

− inf
f∈Fκ

 1

n

t−1∑
j=1

11{fj 6=yj} + 11{ft 6=+1} +

n∑
j=t+1

11{fj 6=εj}

]

It turns out that by concentration inequalities, it even suffices to take a single new sample of
εt+1, . . . , εn for round t to compute qt above. In this case the underlying strategy is peculiar: At
time t, to predict label for vertex vt, we fill seen entries by labels, unseen entries by random εv’s
and solve two optimization problems. One with labels set as mentioned and with label of vt set

to −1 we solve for inff∈Fκ

{
1
n

∑t−1
j=1 11{fj 6=yj} + 11{ft 6=−1} +

∑n
j=t+1 11{fj 6=εj}

}
. Now we do the opti-

mization with only changing the label of vt to a +1. We can then set qt by equation above. Here
once can view the random signs we draw as a kind of regularization or protection against worst
case adversarial future.

Of course two natural questions follow. First, what if outcomes are not binary. We will see
this in the following section. Second, what if we did not know the graph in advance or worse yet
the graph evolves with time, or more generally what if we didnt have just bit prediction but rather
prediction of bit given some input xt like in the classification setting?

5 A Game of Betting

Consider a gambler who bets on the outcomes of games one every round. Specifically, on any round
t, the gambler can choose an amount |ŷt| to bet on the outcome of game between two players or
teams A and B. The gambler can choose to place this bet of |ŷt| on either team A to win or on
team B. If the chosen team wins, the gambler gains an additional amount of ŷt and if the chosen
team looses the gambler looses the bet amount of ŷt. This game of betting can be formalized as
the following linear game between the gambler and the house. Specifically, we can view the choice
of the gambler at round t as a real number ŷt. The magnitude ŷt denotes the bet amount and the
sign of ŷt denotes whether the bet is placed on team A or team B. The corresponding outcome of
the game is encoded by the variable yt ∈ {±1} which indicates whether team A won or team B. At
time t, −ŷt · yt denotes the loss of the gambler. That is if the gambler guessed the outcome right,
that is if sign(ŷt) = yt, then the loss is the negative value of −|ŷt| (or in other words the gambler
gains) and if the outcome is guessed in correctly the gambler looses the amount of |ŷt|.

At time t = 1, . . . , n, the forecaster chooses ŷt ∈ R based on the history y1, . . . , yt−1 and
then observes the value yt ∈ {±1}.

Given some benchmark function φ : {±1}n → R≥0,, the goal of the gambler is to ensure that
the loss of the gambler is smaller than this benchmark. In other words, the gambler would like to

6

ensure that,

∀y, E

[
1

n

n∑
t=1

−ŷtyt

]
≤ φ(y) (6)

Lemma 3. φ is achievable if and only if E [φ(ε)] ≥ 0. Further, in this case, the strategy for the
gambler is given by: ŷt = n · E[φ(y1:t−1,−1, εt+1:n)− φ(y1:t−1,+1, εt+1:n)].

Remark: stability is not required.

Example 5.1. We have a gambler who likes to bet on games played between m teams. Assume
that the information about which pairs of teams play each other for the n matches is announced in
advance. Specifically, say we know that on round t, teams it and jt play each other. Let us further
denote by ni the number of games played by player i. This game of betting can be formalized in
the linear betting games framework above. As specific benchmark a gambler might consider is the
one where each of the m team is given a score represented by an m dimensional vector w. Further,
when team i plays team j, a bet of amount of |w[i] − w[j]| on the team with the larger score is
placed. Further, assume that the largest bet amount is restricted to B. The goal of the gambler is to
do as well as the best scoring of the teams selected in hindsight. This example, can be represented
by the benchmark φ{±1}n 7→ R as follows:

φ(y1, . . . , yn) = inf
w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt]) +
B

2n

m∑
i=1

√
ni (7)

≤ inf
w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt]) +
B

2

√
m

n
(8)

This benchmark satisfies the property that E [φ(ε)] ≥ 0. This is because

E [φ(ε)] = E

[
inf

w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt])

]
+
B

2n

m∑
i=1

√
ni

= E

[
inf

w∈[0,B]m

1

n

n∑
t=1

εt(w[it]−w[jt])

]
+
B

2n

m∑
i=1

√
ni

= E

[
1

n

m∑
i=1

min
w[i]∈[0,B]

n∑
t=1

w[i]εt
(

11{it=i} − 11{jt=i}
)]

+
B

2n

m∑
i=1

√
ni

= E

[
1

n

m∑
i=1

min

{
B

n∑
t=1

εt
(

11{it=i} − 11{jt=i}
)
, 0

}]
+
B

2n

m∑
i=1

√
ni

=
B

n

m∑
i=1

E

min

ni∑
j=1

εj , 0

+

B

2n

m∑
i=1

√
ni

≥ − B
2n

m∑
i=1

√
ni +

B

2n

m∑
i=1

√
ni = 0

where in the last line we used the fact that for any integer N , E
[
min

{∑N
j=1 εj , 0

}]
≥ −
√
N/2.

Hence, from Lemma 3 this benchmark is achievable by the gambler using the strategy ŷt = n ·

7

E[φ(y1:t−1,−1, εt+1:n)−φ(y1:t−1,+1, εt+1:n)]. Finally, noting that square-root is a concave function
and applying Jensen’s inequality, yields that B

2n

∑m
i=1

√
ni ≤ B

2

√
m
n .

8

