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1 Introduction
In this lecture, we study theoretical definitions of privacy.

1.1 Motivating Example
A motivating scenario where we would want to have some notion of privacy is when an instructor
would like to release a population statistic like the average grade for an assignment. A student
taking this class would not want their individual grades revealed or have an adversarial algorithm
exploit the population statistics to extract this information. Here are some ways that a student’s
information is not private with the average

• If there are n students in the class, n−1 students could collude to figure out a single student’s
grade.

• If a student(s) drop the course and the mean is updated, the differential in the average could
be exploited to reveal the grade(s) of the student(s) who dropped the course.

From this example we can see that the reporting of statistics at population-scale is not sufficient to
ensure the privacy of individuals.

2 ε-Differential Privacy
Given the insufficiency of reporting statistics at population-scale, we consider differential privacy
as a formalism for providing rigorous privacy guarantees.

Definition 2.1. (Adjacent Sets) Sets S1 and S2 are adjacent sets if they differ by a single element.

Definition 2.2. (ε-Differential Privacy) A randomized algorithmA : X → R satisfies ε-differential
privacy (ε-DP) if for all adjacent sets S1, S2 ∈ X , range of outcomesR, and any subset of outcomes
R ⊆ R we have

Pr [A(S1) ∈ R] ≤ exp(ε) Pr [A(S2) ∈ R]
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Approximating exp(±ε) by 1± ε, for small ε this approximately states

1− ε ≤ Pr [A(S1) ∈ R]

Pr [A(S2) ∈ R]
≤ 1 + ε

In general, we useR that is a single element of a discrete set or infinitesimal set around a single
element r of a continuous set. The latter part is the same as requiring that the ratio of the densities
of each outcome r ∈ R is bounded between exp(−ε) and exp(ε).

Intuitively, ε-DP is a stability guarantee with respect to the information provided by any one
individual. That is, the behavior of the mechanism does not change substantially when an individ-
ual’s information is included/excluded.

One simple way to achieve this stability is for the algorithm to completely ignore the input set S
and output a fix value. This, of course, is differentially private even for ε = 0. But, such a constant
function also reveals no population level information about S as a whole either. In this lecture, we
see how we can introduce privacy while still computing useful quantities. A basic technique for
doing this is to introduce some noise to the computation. We will see an example of this in next
section.

2.1 Laplace Mechanism
We first explore how to make the computation of a general function f by adding noise to its
outcome. This mechanism is for a single real number in a differentially-private manner, e.g., the
average grade in a course. We do this by adding to f(S) a noise that is drawn from a Laplace
distribution.

Definition 2.3. (Laplace distribution) The Laplace distribution is a continuous probability distri-
bution centered at 0 and with parameter b has the density function

Lap(x | b) , 1

2b
exp

(
−|x|
b

)
. (1)

The distribution is like gluing together two exponential distributions.

Let’s see how adding Laplace noise to the average ofm numbers makes it differentially private.
Suppose we have a set S of m values in [0, b] and we want to output an estimate of their average
while preserving differential privacy. That is, f(S) = 1

|S|
∑

z∈S z. And we release

M(S) = f(S) + η For η ∼ Lap

(
b

mε

)
.

First, we show thatM(S) ≈ f(S) with high probability. That is, the outcome of this mechanism
is very accurate.

Pr

[∣∣∣∣∣M(S)− 1

|S|
∑
z∈S

z

∣∣∣∣∣ ≥ α

]
= Pr

x∼Lap( b
mε)

[|x| ≥ α] = exp

(
−αεm
b

)
≤ β
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for α = b
mε

ln(1/β).
Next, we show thatM(S) is ε-differentially private:

Pr[M(S1) = r] = exp

(
−|r|εm

b

)
.

Now the worst case S2 is such that the average has moved by ±b/m value. In that case we have

Pr[M(S2) = r] = exp

(
−|r − b/m|εm

b

)
.

Then, we have

Pr[M(S1) = r]

Pr[M(S2) = r]
≤ exp

(
−|r|εm+ |r − b/m|εm

b

)
≤ exp (ε) .

Adding Laplace noise to make computations private goes beyond computing the average. But
it can make any function f : Xm → R private. To discuss the notion of stability, we need to
understand the effect one single entry can have on f(S). This is defined below.

Definition 2.4. (Sensitivity) The sensitivity of a real-valued function f is

∆f , max
adjacent S1,S2

|f(S1)− f(S2)| .

Intuitively, the larger that the sensitivity ∆f is, the more difficult it is to preserve ε-differential
privacy. Therefore, we take ∆f into account when deciding how much noise to add to the compu-
tation.

Definition 2.5. (Laplace mechanism) Given a function f : Xm → R the Laplace mechanism is
defined by

MLap (S, f, ε) , f(S) + η. (2)

where η is a random variable drawn from Lap
(

∆f
ε

)
.

Just as we showed that adding Laplace noise to average computation, where sensitivity is b/m,
makes the computation private and has high accuracy, we can prove the following guarantees for
the general Laplace Mechanism.

Theorem 2.6. MLap (S, f, ε) is ε-differentially private. Furthermore, with probability 1− β

|MLap (S, f, ε)− f(S)| ≤ ∆f

ε
ln(1/β).

3 Privacy-preserving Machine Learning
As we saw, the Laplace mechanism is not only a valid method for satisfying ε-differential privacy
but also is accurate. Given that we are interested in accurate private mechanisms, a natural next
question is to ask what can we learn under the constraints of privacy.
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3.1 Privacy-preserving PAC Learning
We define a ε-differentially private (α, β)-PAC learner on the realizable PAC learning setting.

Definition 3.1. A learning algorithm A is an ε-differentially private (α, β)-PAC learner for hy-
pothesis class H if, for any distribution D that is realizable with respect to an unknown h∗ ∈ H,
for privacy parameter ε > 0, for error parameter α > 0, and confidence parameter β > 0, with
probability at least 1 − β, A outputs a hypothesis h ∈ H using at most poly( 1

α
, 1
β
, 1
ε
, rep. ofH)

samples such that

errD(h) ≤ α.

We say thatH is ε-differentially private PAC learnable, if there is an ε-differentially private (α, β)-
PAC learner for all α and β.

In the last lecture, we worked with statistical query model and alluded to the fact that using
population level statistics provides a way to learn while preserving privacy. We formalize that
now.

Theorem 3.2. Any H that is efficiently learnable in the statistical query model is also efficiently
PAC learnable with ε-differentially privacy. In particular, if the statistical query model uses K
queries of tolerance at least τ , then m samples suffice to ε-privately PAC learnH, where

m ∈ O
(
K

ετ
ln

(
K

β

)
+

1

τ 2
ln

(
K

β

))
.

Before we prove this, let us discuss how we can combine privately computed values to retain
their privacy guarantees.

Theorem 3.3 (Privacy under composition). Given mechanisms M1, . . . ,Mk that are each ε-
differentially private, anyM that is defined as a combination of theMi is kε-differentially private.

We now prove Theorem 3.2.

Proof. The main idea is that sensitivity of statistical queries is small. So we can use Laplace
mechanism to effectively compute statistical queries for the required tolerance. Assume that we
used statistical queries ψ1, . . . , ψK of tolerance τ for learningH.

∀i ∈ [K], let fi(S) =
1

m

∑
x∈S

ψi (x, h
∗(x)) ≈ Ex∈D [ψi (x, h

∗(x))] (3)

∀i ∈ [K],∆fi = max
adjacent S1,S2

1

m

∣∣∣∣∣
(∑
x∈S1

ψi (x, h
∗(x))−

∑
x∈S2

ψi (x, h
∗(x))

)∣∣∣∣∣ ≤ 1

m
(4)

We will compute each fi and given set S, we will release Lap
(
S, fi(·), Kεm

)
.
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By the privacy guarantees on the Laplace mechanism, we know this is ε
K

-differentially private.
By the composition theorem for differential privacy, we know that any computation that depends
on these k mechanisms will yield a ε-differentially private mechanism overall. This means we have
shown the privacy guarantees that are desired.

By the accuracy guarantees on the Laplace mechanism, for every fi and every S, we know that
with probability at least 1−β, the error in approximating fi(S) is at most K

εm
ln
(

1
β

)
. If the number

of samples m is at least O
(

2K
ετ

ln
(

1
β

))
, then with probability at least 1−β, the error is at most τ

2
.

Further, as we have seen last lecture, if the number of samples m is at least O
(

1
τ2

ln
(
K
β

))
, then

|fi(S)− Ex∈D [ψi (x, h
∗(x))]| ≤ τ

2
. Ifm is at least both of these amounts, then by triangle inequal-

ity we have that with probability at least 1− β,
∣∣Lap

(
S, fi(·), Kεm

)
− Ex∈D [ψi (x, h

∗(x))]
∣∣ ≤ τ

2
.
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