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Last time

• Defined Random Classification Noise (RCN)

• Defined statistical query model (SQ)

STAT(h∗,D) gets queries of the form (ψ, τ), where ψ : X × {0, 1} → {0, 1} and 0 < τ < 1. The
answer to a query is v such that ∣∣∣∣v − E

[
ψ
(
x, h∗(x)

)]∣∣∣∣ ≤ τ.

Today

Formally see the connection between the RCN and STAT model, and how learnability in these two
settings are related.

1 Warmup: Simulating statistical queries
Theorem 1.1. If H is efficiently learnable in the statistical query model, it is also efficiently
learnable in the realizable PAC model. In particular, if we use M queries each with a tolerance of
at least τ > 0 to learn a hypothesis of errD(h) ≤ ε, then m samples are sufficent to get errD(h) ≤ ε
with probability 1− δ for

m ∈ O

(
1

τ 2
log

(
M

δ

))
.

Proof. Consider using m samples
{

(xi, yi)
}m
i=1

to learn a single query (ψ, τ) using the empirical
estimate

v =
1

m

m∑
i=1

1
(
ψ(xi, yi) = 1

)
.

Note that 1
m

∑
1
(
ψ(xi, yi) = 1

)
is the empirical estimate of Pr

(
ψ(x, h∗(x)) = 1

)
, which is the

same as E
(
ψ(x, h∗(x))

)
because ψ has range {0, 1}. We can use the Hoeffding bound to show that∣∣∣∣∣∣ 1

m

m∑
i=1

(
1
(
ψ(xi, yi) = 1

))
− E

[
ψ
(
x, h∗(x)

)]∣∣∣∣∣∣ ≤ exp

(
−mτ 2

2

)
≤ δ.
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If we have M queries, then we need to use a union bound to ensure that all of them are true with
probability δ, which means we need to solve

exp

(
−mτ 2

2

)
≤ δ/M.

Solving, we see that if we can answer all M queries with τ accuracy with probability 1− δ as long
as

m ≥ 1

τ 2
log

(
M

δ

)
,

as desired.

2 SQ-Learnability and RCN-Learnability
STAT-learnability implies learnability in the PAC with random classification noise model.

Theorem 2.1. If H is efficiently learnable in the statistical query model, it is also efficiently
learnable in the PAC model with random classification noise. In particular, if we use M queries
each with a tolerance of at least τ > 0 to learn a hypothesis of errD(h) ≤ ε, then m samples are
sufficent to get errD(h) ≤ ε with probability 1− δ for

m ∈ O

(
1

τ 2(1− 2η)2
ln

(
M

δ

))
.

Remark 2.2. For ease of this next proof, instead of ψ : X × {0, 1} → {0, 1} we use

ψ : X × {−1, 1} → {−1, 1} .

This doesn’t change the expressivity of the model, but makes the math easier for us.

2.1 Simplifying E
x∼D

[
ψ
(
x, h∗(x)

)]
For any query ψ, we want to separate it into a part that cares only about the marginal distributions
(but not the labels), and a part that also cares about the labels. This is similar to our previous proof
for monotone ands – there were parts that cared about the relative frequency of 0 and 1 but not
about the label or the noise, and other parts that cared about the labels given that certain features
were set to 1.

E
x∼D

[
ψ
(
x, h∗(x)

)]
= E

x∼D

[
ψ (x, 1) · 1

(
h∗(x) = 1

)]
+ E

x∼D

[
ψ (x,−1) · 1

(
h∗(x) = −1

)]
= E

x∼D

[
ψ (x, 1) · 1 + h∗(x)

2

]
+ E

x∼D

[
ψ (x,−1) · 1− h∗(x)

2

]
=

1

2
E
x∼D

[
ψ (x, 1) + ψ (x,−1)

]
+

1

2
E
x∼D

[
ψ (x, 1)h∗(x)− ψ (x,−1)h∗(x)

]
target independent correlation of h∗(x) with some other function
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This works because

1
(
h∗(x) = 1

)
=

1 + h∗(x)

2
and 1

(
h∗(x) = −1

)
=

1− h∗(x)

2

This substitution lets us split any query ψ into a target independent term that cares only about
the marginal distribution of xi, and a correlational term that cares about the correlation between
h∗(x) and some other function.

2.2 Target Independent and Correlational Queries
We can use these two types of queries without loss of generality.

Definition 2.3 (Correlational queries). A query of the form ϕ : X → {−1, 1} and tolerance
τ ∈ (0, 1) which returns a v as follows is called a correlational query.∣∣∣E [ϕ(x) · h∗(x)

]
− v
∣∣∣ ≤ τ

This gives us information about h∗.

Definition 2.4 (Target independent queries). A query of the form φ : X → {−1, 1} and tolerance
τ ∈ (0, 1) which returns a v as follows is called a target independent query.∣∣∣E [φ(x)

]
− v
∣∣∣ ≤ τ

This is sufficient to answer questions about the marginal distribution.

2.3 Simulating Queries in the RCN Model
Simple case: Target independent queries

Target independent φ : X → {−1, 1}. The noise has no effect, so given
{

(x1, y1), ..., (xm, ym)
}

,
just throw out the yi and compute

v =
1

m

m∑
i=1

φ(xi).

This is just the same as the warm up exercise, since throwing out yi throws out the source of noise,
and it is the same as in the case for deterministic labels.∣∣∣v − E

[
φ(x)

]∣∣∣ ≤ τ.

Given 1
τ2

log
(
M
δ

)
data points, we succeed with probability 1− δ.
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Correlational queries

Recall that D(η) is the noisy version of D, with random classification noise η. Answering the
query ϕ means approximating Ex∼D

[
ϕ(x) · h∗(x)

]
. However we can only have direct access to

E(x,y)∼D(η)
[
ϕ(x) · y

]
. How can we relate these?

Claim 2.5. Ex∼D
[
ϕ(x) · h∗(x)

]
and E(x,y)∼D(η)

[
ϕ(x) · y

]
are related by:

E
(x,y)∼D(η)

[
ϕ(x) · y

]
= (1− 2η) E

x∼D

[
ϕ(x) · h∗(x)

]
.

Proof. Because ϕ has range {−1, 1} , we can say that

E
(x,y)∼D(η)

[
ϕ(x) · y

]
= Pr
D(η)

[
ϕ(x) = y

]
− Pr
D(η)

[
ϕ(x) 6= y

]
The first term is the probability that ϕ(x) agrees with y. That can either happen because ϕ(x)

agrees with h∗(x) and y wasn’t flipped, or because ϕ(x) disagrees with h∗(x), but y was flipped.

Pr
D(η)

[
ϕ(x) = y

]
= Pr

(
ϕ(x) = h∗(x)

)
· Pr

(
h∗(x) = y

)
+ Pr

(
ϕ(x) 6= h∗(x)

)
· Pr

(
h∗(x) 6= y

)
= Pr

(
ϕ(x) = h∗(x)

)
(1− η) +

(
1− Pr

(
ϕ(x) = h∗(x)

))
η

= (1− 2η) Pr
(
ϕ(x) = h∗(x)

)
+ η.

The second term is the probability that ϕ(x) disagrees with y. That can either happen because
ϕ(x) disagrees with h∗(x) and y wasn’t flipped, or because ϕ(x) agrees with h∗(x) but y was
flipped.

Pr
D(η)

[
ϕ(x) 6= y

]
= Pr

(
ϕ(x) 6= h∗(x)

)
· Pr

(
h∗(x) = y

)
+ Pr

(
ϕ(x) = h∗(x)

)
· Pr

(
h∗(x) 6= y

)
= Pr

(
ϕ(x) 6= h∗(x)

)
(1− η) +

(
1− Pr

(
ϕ(x) 6= h∗(x)

))
η

= (1− 2η) Pr
(
ϕ(x) = h∗(x)

)
+ η.

Notice that both terms are now expressed in terms of the probability of how ϕ(x) relates to the
true h∗(x), rather than to the noisy y.

E
(x,y)∼D(η)

[
ϕ(x) · y

]
= Pr
D(η)

[
ϕ(x) = y

]
− Pr
D(η)

[ϕx 6= y]

= (1− 2η) Pr
(
ϕ(x) = h∗(x)

)
+�η −

(
(1− 2η) Pr

(
ϕ(x) = h∗(x)

)
+�η
)

= (1− 2η)
(

Pr
(
ϕ(x) = h∗(x)

)
− Pr

(
ϕ(x) = h∗(x)

))
= (1− 2η) E

x∼D

[
ϕ(x) · h∗(x)

]
as desired.
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Number of samples needed to estimate v

If we want to estimate a correlational query v = E
D

[
ϕ(x) · h∗(x)

]
to accuracy τ , we should estimate

v′ = E
D(η)

[
ϕ(x) · h∗(x)

]
to accuracy τ ′, where τ ′ is a parameter to be set later. Consider m samples{

(xi, yi)
}m
i=1

from the RCN oracle EXη(h∗,D), and compute v′ as

v′ =
1

m

m∑
i=1

ϕ(xi) · yi.

setting m such that ∣∣∣∣v′ − E
D(η)

[
ϕ(x) · y

]∣∣∣∣ ≤ τ ′.

Setting v = v′

1−2η as our estimate for E
D

[
ϕ(x) · h∗(x)

]
, we get∣∣∣∣v − E

D

[
ϕ(x) · h∗(x)

]∣∣∣∣ =

∣∣∣∣ v′

1− 2η
− E
D

[
ϕ(x) · h∗(x)

]∣∣∣∣ (1)

=

∣∣∣∣ v′

1− 2η
− 1

1− 2η
E
D(η)

[
ϕ(x) · y

]
+

1

1− 2η
E
D(η)

[
ϕ(x) · y

]
− E
D

[
ϕ(x) · h∗(x)

]∣∣∣∣
(2)

=
1

1− 2η

∣∣∣∣v′ − E
D(η)

[
ϕ(x) · y

]∣∣∣∣ (3)

≤ 1

1− 2η
τ ′ (4)

(5)

At step 2 we add and subtract 1
1−2η E

D(η)

[
ϕ(x) · y

]
. We can cancel out the last two terms of line (2)

because of Claim 2.5. Setting τ ′ = (1− 2η) τ , we get∣∣∣∣v − E
D

[
ϕ(x) · h∗(x)

]∣∣∣∣ ≤ τ

We know from Theorem 1.1 that the sample complexity of learning v′ is 1
τ ′2

log
(
M
δ

)
, so if we

substitute in our expression for τ ′ we get a sample complexity of

1

τ 2(1− η)2
log

(
M

δ

)
.

Conclusion
This shows that anything you can learn efficiently in the statistical query model, you can learn
in the PAC+RCN model, and if you needed M queries of tolerance τ , then all you need is m ∈
O
(

1
τ2(1−η)2 log

(
M
δ

))
data points to learn in the PAC+RCN model.

5



3 Discussion

What if η is unknown?
We can guess and try it. For example, if we have an effective upper bound η′ ≥ η, and η′ − η = ∆
for a small ∆, then as long as ∆ is small compared to τ it won’t really affect our accuracy. We just
need a few more samples.

So, we can try our algorithm with η′ ∈
{

0,∆, 2∆, ..., 1/2
}

. We know that one of these η′ is
close enough to be okay, and we can look at the error that we observe.

Why are correlational queries interesting?
• They give us insight into how much of the difficulty of the learning ask is coming from its

labels, as opposed to coming from its marginal distribution. If I knew D the marginal, the
only type of queries that you need to ask are correlational. This gives rise to a statistical query
dimension.

• SQ-DimD(H) = d if I have functions f1, f2, ..., fd ∈ H, such that for all i 6= j we have
E
D

[
fi(x) · fj(x)

]
≤ 1

d
≈ 0. This lets us say that fi are effectively an orthogonal basis vectors

forH. If you have SQ-DimD(H) = d, then you need Ω(τ 2d) queries of τ accuracy. Since the
fi are not correlated with each other, any query ϕ will be measuring one of them, but not the
rest of them. So there has to be many of these queries in order to learn. You will formalize
this in HW5.
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