
CS6781 - Theoretical Foundations of Machine Learning

Lecture 23: Learning in the Presence of Noise
April 30, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Ritabrata Ray

In the previous lectures, we encountered several models of learning:

• Realizable PAC learning: In this model, all data is labelled by some h∗ ∈ H and we find
h ∈ H such that errD(h) ≤ ε.

• Agnostic PAC learning: Here no assumption is made on how data is labelled and we aim to
find an h ∈ H such that errD(h) ≤ minh∗∈H errD(h

∗) + ε.

In this lecture, we will explore another model of learning in the presence of noise. To motivate this
model we can think of the agnostic PAC model as if the data was labelled according to h∗ ∈ H,
an adversary flips the labels of some OPT fraction of the data and we try to match the predictions
of h∗. This flipping of the labels can be interpreted as noise. In this lecture, we consider a dif-
ferent model of noise that is more benign, where the label of every instance is flipped with equal
probability.

1 Random Classification Noise (RCN) Model
In this lecture we seek a middle ground between realizable PAC and the adversarial noise models,
called the RCN model.

Definition 1.1. A random classification noise (RCN) oracle of rate η < 1
2

for a fixed hypothesis
h∗ : X → {−1,+1} and distribution D over domain X (the marginal distribution of X as in the
realizable PAC model) is denoted by EXη(h∗,D). When we call EXη(h∗,D) it draws x ∼ D and
with probability 1− η gives us (x, h∗(x)) and with probability η it gives us (x,−h∗(x)).

Some remarks on the RCN model:

• Here the adversary does not choose which points are flipped but rather each instance has the
same likelihood of getting its label flipped.

• If η = 0 then this is just taking iid x1, . . . , xm ∼ D and labelling them by h∗ which is the
realizable PAC model.

• The noise is independent across all calls to the oracle EXη(h∗,D) and the noise rate is exactly
η for all points rather than the more optimistic model of at most η.

1

• If η = 1
2
, then we have pure noise and both h∗ and −h∗ and in fact any h ∈ H is equally

good and there is nothing to learn. As η → 1
2

detecting between h∗ and −h∗ becomes harder
both with respect to the runtime and the sample complexity as they grow with 1

1−2η . (This is
similar to the situation encountered earlier in the course while proving lower bounds on the
sample complexity of Agnostic PAC learning).

Next we define the concept of learnability in this model.

Definition 1.2. PAC learning in the presence of RCN: A hypothesis classH is PAC learnable in
the presence of RCN if there is an algorithm A such that for any h∗ ∈ H, any distribution D, and
any ε > 0, δ > 0 and any (known) η < 1

2
, given access to EXη(h∗,D) with probability > 1 − δ

gives h such that errD(h) ≤ ε. Moreover we say H is efficiently learnable if algorithm A runs in
time poly(1

ε
, 1
δ
, 1
1−2η , size of natural representation ofH).

Remark 1.3. The assumption that η is known is not required but we make it for simplicity in the
forthcoming analysis. Also by errD(h) we mean the error of h when x ∼ D and h∗ then labels the
instances x. We call this distribution D the clean distribution.

In this model, we are measuring success with respect to the clean distribution D where we
never actually see samples coming from this distribution. So, the question is how can we learn in
such a strong model?
We introduce a new notation D(η) as the noisy distribution of the data where we see data from the
RCN oracle EXη(h∗,D) and D is the clean distribution. We begin with the observation that if we
can estimate errD(η)(h) then we can also measure errD(h) with the same accuracy since

errD(η) = errD(h)(1− η) + (1− errD(h))η.

The above equation is true since the hypothesis h mis-classifies an instance coming from the
noisy distribution if either the true label was received but the hypothesis would have mis-classified
it even if it had arrived from the clean distribution or if the hypothesis labels the instance correctly
coming from the clean distribution but the noise had the label flipped so it accounts for a mis-
classification in the noisy distribution. Note that the above equation is only true if each label has
the same probability of flipping η (instead of any label being flipped with probability at most η),
as is the case with the RCN model.

2 Learning Monotone Conjunctions in the Presence of RCN
To answer the question of learning efficiently in this model we will consider the problem of learn-
ing monotone conjunctions. We had visited the problem of learning monotone conjunctions in the
consistency model (realizable PAC setting) during the early parts of this course. Let us recall that
in this problem we have X = {0, 1}n, Y = {0, 1} and H = {h : h(x) =

∧
i∈J xi, J ⊆ [n]}

and in the consistency model all the samples are labelled according to a fixed h∗ ∈ H. Recall
that the algorithm for learning monotone conjunctions in the consistency model was to begin with

2

h(x) =
∧
i∈[n] xi and go one by one on S = {x1, . . . ,xm} and if we see xi = 0 but h∗(x) = 1 for

some x ∈ S, then we eliminate i from J . However this algorithm will not work in the RCN model
as we may kick out some xi which was actually in h∗ because we received a flipped label. Most
likely, this algorithm will kick out all i ∈ J where J corresponds to the true hypothesis h∗.
We use another algorithm to learn monotone conjunctions in the RCN model. At a high level,
we focus less on individuals and focus on population statistics. We consider the bad condi-
tion: xi = 0, h∗(x) = 1 and ask what is the probability with which this bad condition oc-
curs! Informally, we output h(x) =

∧
i∈J xi where J contains all such i ∈ [n] which satisfy:

Pr[xi = 0, h∗(x) = 1] = 0 (or close to zero) but have large Pr[xi = 0], so that the probability of
keeping bad i’s in our J is low.

Let us first describe this algorithm as an alternative the elimination algorithm above even when
the distribution is not noisy. We begin with the following definitions:

Definition 2.1. Significant variable: A variable xi is called a significant variable if

Pr
x∼D

[xi = 0] ≥ ε

4n

where n is the number of boolean variables.

Definition 2.2. Harmful variable: a variable xi is called harmful if

Pr
x∼D

[xi = 0, h∗(x) = 1] >
ε

4n
.

The algorithm then is predicting using: h(x) =
∧
i∈J xi where J = {i : i is significant but not harmful}.

We have for this h,

errD(h) = Pr
x∼D

[h(x) = 0, h∗(x) = 1] + Pr
x∼D

[h(x) = 1, h∗(x) = 0]

In the above equation, the first error term occurs due to the presence of a variable xi in h such
that xi is not in h∗. As xi is in h by definition , it is a significant but not a harmful variable. Any
variable xi which is not harmful can cause the event xi = 0, h∗(x) = 1 with probability ≤ ε

4n
.

Since any of the n variables can be such a significant but not harmful variable, by union bound
Prx∼D[h(x) = 0, h∗(x) = 1] ≤ n× ε

4n
= ε

4
.

The second error term in the above equation is caused by variable xi which is present in h∗ but was
not added in h. Since it is present in h∗, it cannot be harmful, but as it is not in h it is not significant.
The error occurs when this insignificant variable xi is 0, but insignificant variables are assigned
0 in D with probability at most ε

4n
. Again as any of the n variables can be such an insignificant

variable, by the union bound, Prx∼D[h(x) = 1, h∗(x) = 0] < n× ε
4n

= ε
4
. Thus,

errD(h) = Pr
x∼D

[h(x) = 0, h∗(x) = 1] + Pr
x∼D

[h(x) = 1, h∗(x) = 0] ≤ ε

4
+
ε

4
=
ε

2
.

3

Remark 2.3. The reason we have errD(h) ≤ ε
2

instead of ε is to keep room for estimation errors
when we use empirical estimates to set the thresholds for significant and harmful variables.

Now we consider the problem of learning monotone conjunctions in the presence of RCN.
We use the above algorithm for the noiseless case but this time we don’t have the true values of
P (xi = 0) = Prx∼D[xi = 0] and P 1(xi = 0) = Prx∼D[xi = 0, h∗(x) = 1] to determine which
variables are significant and which are harmful. So, we estimate both these quantities.

To estimate P (xi = 0), we take a number of samples from the oracle EXη(h∗,D) and throw
out the labels. Then we do the empirical average of the cases where xi = 0 to estimate P (xi = 0)
and by Chernoff bound for a sufficiently large number of samples Õ(n

ε
), this empirical average is

within a factor 2 of the true value of P (xi = 0).
In order to estimate P 1(xi = 0), we use

P 1(xi = 0) = Pr[xi = 0].Pr[h∗(x) = 1|xi = 0]

Here for the first term in the RHS we use the above estimated P (xi = 0) and for the second term
first of all we take some number of samples from EXη(h∗,D) and take the empirical fraction of
those labelled 1 among the ones having xi = 0. By Hoeffding bound, for a sufficiently large
number of samples this empirical average is close to Pr(x,y)∼D(η)[y = 1|xi = 0]. But in the RCN
model we have, as seen earlier:

Pr
(x,y)∼D(η)

[y = 1|xi = 0] = (1− η) Pr
x∼D

[h∗(x) = 1|xi = 0] + (1− Pr
x∼D

[h∗(x) = 1|xi = 0])η

Now having an estimate for the LHS we can estimate Prx∼D[h
∗(x) = 1|xi = 0] with the same

accuracy multiplied by a factor of 1
1−2η by solving for it from the above equation. Now with these

two estimates we have an estimate for P 1(xi = 0).
Thus, using this algorithm monotone conjunctions are PAC learnable in the RCN model.

3 Statistical Query Model
Observe that the algorithm for learning monotone conjunctions in the RCN model (last section)
needed the estimates for P (xi = 0) and P 1(xi = 0) for all i ∈ [n]. If we have these estimates
then we no longer need an access to the oracle but we can still PAC learn monotone conjunctions
in the RCN model. In other words, this algorithm did not use information about individual points
but rather used population statistics. This is useful when learning is done in presence of random
noise, as noise present in one individual is a random bad event that should not have large impact on
what the algorithm does. As we will see later, this is also important when learning is done while
keeping privacy issues in mind as individual queries on the data points are more susceptible to a
breach of privacy than queries such as population statistics. The model we develop here formalizes
this use of population level statistics. This is called the Statistical Query Model. This model puts
restrictions on how we can use EXη(h∗,D) to only compute population level statistics.
Here we have another (a different) oracle:

4

Definition 3.1. STAT(h∗,D) which accepts queries of the form (ψ, τ), where ψ : X × {0, 1} →
{0, 1} (is a function that takes as input an unlabelled instance and a bit and outputs a bit) and
0 < τ ≤ 1 (is the tolerance value) and returns a value v such that

|v − E[ψ(x, h∗(x))]| ≤ τ

We can interpret ψ(x, h∗(x)) as a predicate or a property of x ∈ X . We use it as whether the
property is (un)satisfied by (x, h∗(x)) and τ is the tolerance or accuracy of the query. An example
of such a query is ψi(x, h∗(x)) = 1{h∗(x) = 1 and xi = 0}

3.1 Example-Monotone Conjunctions in the Statistical Query Model
We take the the algorithm for learning monotone conjunctions in the RCN model from the previous
section as an example. To estimate Prx∼D[xi = 0] we make the following query to STAT (h∗,D) :

ψi(x, b) =

{
1 if xi = 0

0 if xi = 1

Here b is a dummy bit and has no effect on the outcome. We have E[ψi(x, h∗(x))] = Prx∼D[xi =
0], and we get the desired estimate in expectation with a tolerance of τ .

Similarly in order to estimate Prx∼D[xi = 0, h∗(x) = 1] we make the query ψi(x, h∗(x) to
STAT (h∗,D) where:

ψi(x, b) =

{
1 if xi = 0, b = 1

0 otherwise

Again, E[ψi(x, h∗(x)] = Prx∼D[xi = 0 ∧ h∗(x) = 1]. so, we again get the desired estimate in
expectation within a tolerance of τ .

Thus, the analysis from the last section shows that we can learn monotone conjunctions in the
statistical query model.

3.2 SQ-Learnability
Next we formally define the notion of learnability in this statistical query model.

Definition 3.2. Learnability in the Statistical Query Model: A hypothesis class H is efficiently
learnable in the statistical query model if there is an algorithm A such that for every D, h∗ ∈ H,
0 < ε < 1, which has access only to STAT (h∗,D) learns a hypothesis h, such that errD(h) ≤ ε
using queries (ψ, τ) such that τ > 1

poly(1
ε
, size of natural representation ofH)

and ψ is evaluated in time

poly(1
ε
, size of natural representation ofH) andA halts in poly(1

ε
, size of natural representation ofH)

time.
As an example, the algorithm for learning monotone conjunctions in the statistical query model,
from the previous subsection, is also efficient as the size of natural representation of H here is n
and the run time for each query is also linear in n and doesn’t depend on ε, thus poly(n, 1

ε
). Also

5

the algorithm halts in a polynomial time as it only makes 2 queries for each i ∈ [n]. Moreover, the
analysis still hold in this model if we choose a tolerance level τ ≥ ε

4n
= 1

poly(1
ε
,n)

, thus satisfying
all the requirements for efficient learning in the statistical query model.

We notice that there is no notion of δ in the statistical query model and it is actually the tolerance
level τ that accounts for δ in this model. In the next class, we will see how to simulate these queries
with a desired level of tolerance τ from random samples and how the number of samples is related
to the probability 1− δ of achieving the desired level of tolerance τ .

6

