
CS6781 - Theoretical Foundations of Machine Learning

Lecture 22: Generalized FTPL
April 28, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Richard Lanas Phillips

1 Generalized FTPL
In this lecture, we continue our study of oracle-efficient online learning. Recall that even given
access to an offline ‘oracle’ that can solve a given problem with high accuracy, Hazan and Ko-
ren [2016] showed that online low-regret algorithms cannot exist in general with sub-exponential
dependence on n. This means that there is a persistent exponential gap between online learning
and offline learning in the general cases. Recent work has shown that certain assumptions on the
structure of the problem can allow for oracle-efficient learning. Examples include FTPL for linear
objective functions Kalai and Vempala [2005] and a generalization to submodular objective func-
tions Hazan and Kale [2012]. Dudik et al. [2017] unifies these algorithms and presents a set of
sufficient conditions for oracle-efficient online learning. The authors present Generalized-Follow-
the-Perturbed-Leader for oracle-efficient learning based on the concept of d-structures. Recall
from last lecture we have that

Definition 1.1. An online optimization problem with utility function u : X × Y is to have a d-
structure if there are d actions of the adversary y(1), . . . , y(d) ∈ Y , such that for any two different
actions of the learners x, x′ ∈ X , there is j ∈ [d] such that, u(x, y(j)) 6= u(x′, y(j)).

We can understand the definition by the figure below using the game matrix. Existence of a
d-structure means that there are d columns such that any two rows x and x′ are distinct when we
only consider the submatrix induces by columns in the d-structure.

1

Theorem 1.2. If the problem has a d-structure and the utilities are 0-1, then you can have a no-
regret algorithm with regret O(d

√
T) and oracle-efficient runtime of poly(d, T).1

We will analyze Generalized FTPL for oracle efficient learning when the problem has a d-
structure. This is he algorithm that satisfies the requirements of Theorem 1.2. The algorithm takes
the d-structure {y(1), · · · , y(d)}. For each of the adversarial actions y(j) in the d-structure, it draws a
random number αj , which is going to be the number of the copies of that action that will be added
to the hallucinated history. This is a generalization of FTPL when perturbations look like changes
to the actual history, instead of i.i.d random perturbation across the experts.

Algorithm 1 Generalized FTPL (Dudik et al. [2017])

1: Draw αj ∼ Unif [0,
√
T] independently for j = 1, 2, 3, ...d.

2: for i = 1, ..., T do
3: Play

xt = OPT

{yτ}t−1
τ=1 ∪

⋃
j∈[d]

αjy(j)

4: Observe yt and receive payoff u(xt, yt).
5: end for

It is simple to see that the algorithm runs in poly(d, T) and that it is oracle-efficient. What
remains to be shown is that the above regret bound holds true. To show this, we will examine the
performance on the real history plus the performance on the fake history in Equation 1. Note that
the second term in this equation corresponds to the single random cost c0(x) in standard FTPL.
Note that equivalently xt can be defined by

xt = arg max
x

[
t−1∑
τ=1

u(x, yτ) + ~α ·Mx

]
= arg max

x

[
t−1∑
τ=1

u(x, yτ) +
d∑
j=1

αju(x, y(j))

]
. (1)

Recall the stability lemma for FTRL

E[Regret] ≤ E

[
T∑
t=1

u
(
xt+1, yt

)
− u

(
xt, yt

)]
+ E [R(x1)−R(x∗)] , (2)

which bounds the regret in terms of the stability and perturbation cost. Let M be the |X | × d
submatrix of the game matrix referring to columns y(1), . . . , y(d) and let Mx be the row vector in
this matrix referring to x. Then in this setting we have

E[Regret] ≤ E

[
T∑
t=1

u
(
xt+1, yt

)
− u

(
xt, yt

)]
︸ ︷︷ ︸

(1)

+E [~α · (Mx1 −Mx∗)]︸ ︷︷ ︸
(2)

. (3)

1The assumption of 0-1 utilities is added for simplicity in thees lectures. Refer to [Dudik et al., 2017] to an
unrestricted version of this theorem.

2

Note that (2) can be bounded as follows:

E [~α · (Mx1 −Mx∗)] ≤ E [‖~α‖∞ · ‖Mx1 −Mx∗‖1] ≤ O
(
d
√
T
)
.

So it’s sufficient to also bound (1) byO
(
d
√
T
)

. For that it is sufficient to show that for a fixed

t, Pr [xt+1 6= xt] ≤ O (d/
√
t). Using the uniqueness of the rows, we can state that

Pr[xt+1 6= xt] ≤
d∑
i=1

Pr[xt and xt+1 differ on Col(i) of M].

Regret bound Without loss of generality, let us consider i = 1. For simplicity, we will focus on
bounding the probability Pr[xt has a 0 in column 1, xt+1 has 1 in col 1]. Below we’ll define x0 to
be one of the best experts at time t among all those for which Mxi = 0. And, x1, one of the best
experts at time t+ 1 among all those for which Mxi = 1. That is,

x0 ∈ arg max
x:Mx1=0

t−1∑
τ=1

u
(
x, yt

)
+ ~α ·Mx

= arg max
x:Mx1=0

t−1∑
τ=1

u
(
x, yt

)
+

d∑
i=2

αiu
(
x, y(i)

)
+ α1 × 0.

and

x1 ∈ arg max
x:Mx1=1

t∑
τ=1

u
(
x, yt

)
+ ~α ·Mx = arg max

x:Mx1=1

t−1∑
τ=1

u
(
x, yt

)
+ u(x, y1) +

d∑
i=2

αiu
(
x, y(i)

)
+ α1 × 1.

Note that in the above equations α1 does not play a role in the selection of x0 and x1, as it is a
constant.

Let S ′ be the fake history up to time t excluding the first column of perturbations, that is,
S ′ := {y1, . . . , yt−1, α2y

(2) . . . , αdy
(d)}. We’ll also define

∆ := Utility of any expert x0 on set S ′ − Utility of any expert in x1 on set S ′.

This prepares us to make the following useful observations.

1. Given that xt has value 0 in column 1, then the utility of x0 is higher than that of x1 on on
the actual perturbed history S ′ ∪ α1y

(1). That is,

∆ + α1u(x0, y(1))− α1u
(
x1, y(1)

)
> 0 =⇒ ∆ ≥ α1.

2. Given that xt+1 has value 1 in column 1, then the utility of x1 is higher than that of x0 on on
the actual perturbed history at time t+ 1, S ′ ∪ α1y

(1) ∪ yt. That is,

∆+α1u(x0, y(1))−α1u
(
x1, y(1)

)
+u
(
x0, y(t)

)
−u
(
x1, y(t)

)
≤ 0 =⇒ ∆ ≤ α1+u(x1, y(t))−u(x0, y(t)).

3

Note that utility is bounded [0, 1], therefore, −1 ≤ u(x0, y(t))− y(x1, y(t)) ≤ 1. As a reminder,
for our stability analysis we are interested in bounding the event Pr[xt and xt+1 differ on Col(i) of M]:

Pr[Mxti = 0 but Mxt+1i = 1] ≤ Pr
[
∆ + u(x0, y(t))− u(x1, y(t)) ≤ α1 ≤ ∆

]
.

Based on the fact that we’ve drawn α from U(0,
√
T) and that we must draw α1 =

√
T for the

above event to happen

Pr
[
∆ + u

(
x0, y(t)

)
− u

(
x1, y(t)

)
≤ α2 ≤ ∆

]
≤ 1√

T
.

We can the take the union bound over d columns and the possibility that xt had a 1 and xt+1

had a 0 to show the desired regret bound O
(

d√
T

)
.

2 Lower Bounds for No-Regret Algorithms
We’ll now double back and describe a proof for our motivating result for introducing d-structure:
without structural assumptions, no-regret algorithms are not feasible for exponential numbers of
experts.

Theorem 2.1. Any no-regret algorithm, even with an offline oracle, cannot guarantee a regret of
≤ T

16
with runtime better than O(

√
N

log3(N)
).

To prove this we will look at the set of functions on the unit cube. But first, some useful
definitions:

Definition 2.2. f : {0, 1}n → N is globally consistent if any local maximum is a global maxi-
mum. Let Γ(i) signify the neighbors of i. Then,

(∀j ∈ Γ(i) f(j) ≤ f(i)) =⇒ ∀j ∈ {0, 1}n f(j) ≤ f(i)).

Definition 2.3. The Aldous problem asks that, given query access, i.e., evaluation of f(·) on a
given point in the domain, to an arbitrary globally consistent function f , design a randomized
algorithm that determines whether f ∗ = maxi f(i) is odd or even with probability ≥ 2

3
.

It is well-known that the Aldous problem requires many queries. That is:

Theorem 2.4. Any algorithm that solves the Aldous Problem has to take Ω
(

2
d
2

d2

)
queries to f in

the worst case.

We use Theorem 2.4 to show that even having access to an offline optimization, any no-regret
algorithm has a runtime that is more than Ω

(√
N/ log3(N)

)
. At a high level, our proof would

follow four steps

4

Figure 1: Game G defined below.

1. Given an f , construct a game where the minmax value is a if f ∗ is odd and is b if f ∗ is even.
And |a− b| ≥ Ω(1).

2. Make sure that the time spent on making a call to the best response oracle is comparable to
the number of queries that we have to make to f to perform/implement the oracle.

3. Show that a no-regret algorithm pair with a best response oracle gives us a way to get arbi-
trarily close to the minmax value of the game. This we already did on the April 21 Lecture
and you will practice another variant of it in Homework 5. This means that by playing a
no-regret algorithm against itself, we can learn the minmax value of the game to accuracy
O
(

1/
√
T
)

. And as a result a no-regret algorithm reveals whether f ∗ is odd or even.

4. So, the existence of a fast no-regret algorithm that uses an oracle implies the existence of an
algorithm for solving Aldous Problem. Use step 2 to show that the number of queries would
be small. By Definition 2.3, we know that this cannot be the case and, thus, there can be no
fast no-regret algorithm as per Theorem 2.1

Let us now see some of the details of such a game that satisfied points 1 and 2. Let us interpret
k ∈ Z as the analog of the nodes on the cube. Let

λ(k) :=

{
1
4

k is even
3
4

k is odd

and define the game matrix to be

G =

λ(f(i)) if i, j are both global maxima
0 f(i) > f(j)
1 otherwise

(4)

It is clear to see that λ(f(i)) is the minmax value. For a global maximum i∗, if the row player
goes first their best action is ei∗ . The column player will also play ei∗ .

5

min
P

max
Q

G(P,Q) ≤ max
Q

G (P ∗, Q) = λ

If the column player goes first they will play ei∗ and then the row player will also play ei∗ .

λ = min
P
G (P,Q∗) 6 max

Q
min
P
G(P,Q)

Using a fast no-regret algorithm you can approximate the minmax value. Given the minmax
value you can tell if f∗ is is odd or even, solving the Alduos problem.

For point (2), we need to show that we can simulate the oracle calls using a small number of
queries. For that, one can show that the best-response of the row player to Q, i.e., BR(Q) :=
argminj∈[N]e

>
j GQ, is

BR(Q) = argmaxi∈Γ(Supp(Q))f(i).

We will leave this as an exercise.
Now note that each oracle call computes argmaxi∈Γ(Supp(Q))f(i) which can be computed using

|Supp(Q)| × log2(N) number of queries. That is because each point on the cube has log2(N)

neighbors. By Aldous’s problem then |Supp(Q)| ∈ Ω
(√

N/ log3
2(N)

)
. But now note that the

time it takes to run the online algorithm is at least the time needed to create the input for the oracle,
which takes at least |Supp(Q)| ∈ Ω

(√
N/ log3

2(N)
)

.

References
Miroslav Dudik, Nika Haghtalab, Haipeng Luo, Robert E Schapire, Vasilis Syrgkanis, and Jen-

nifer Wortman Vaughan. Oracle-efficient online learning and auction design. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS), pages 528–539. IEEE,
2017.

Elad Hazan and Satyen Kale. Online submodular minimization. Journal of Machine Learning
Research, 13(Oct):2903–2922, 2012.

Elad Hazan and Tomer Koren. The computational power of optimization in online learning. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 128–
141, 2016.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

6

	Generalized FTPL
	Lower Bounds for No-Regret Algorithms

