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In the previous lectures, we spent most of the time focusing on the statistical considerations in
online learning, such as the Littlestone dimension, regret, partial vs. full information, etc. In this
lecture, we focus on the computational aspects of online learning. Formally, considering the online
learning framework where we have n experts, we want to know the runtimes over T timesteps as a
function of n and T . To isolate the effects adversarial nature of online learning has on the runtime
of these algorithms from the inherent difficulty of the task even in absence of an adversary, we will
compare the runtime of (adversarial) online learning to the runtime of (stochastic) offline learning.

1 Runtime of Online Learning Algorithms
Let us recap the runtime of some of the online algorithms we studied in this course.

Randomized Weighted Majority In the Randomized Weighted Majority (RWM) algorithm, we
performed the following update rule at each time step t,

wt+1
i ← wti(1− ε)c

t
i for all i ∈ [n]

Later we draw it+1 proportional to wt+1
i . This results in a runtime of O(nT ) over T time steps.

Follow the Perturbed Leader In the Follow the Perturbed Leader (FTPL) algorithm, we first
need to generate a random vector c0, i.e., the regularizer or the cost function at step 0, and then we
find the expert whose performance on time steps 0 . . . , t− 1 was optimal. That is,

Step 0: Create a random cost ~c 0, where ~c 0 ∈ Rn

Step t: Find expert it = argmin
i

∑t−1
τ=0 c

t
i, i ∈ [n]

As for the runtime, note that it tames O(n) time to create an n-dimensional random vector ~c0.
Naively implemented, at time step t we can observe the performance one expert over t time steps,
in time O(t) and choose the best one in total time O(nT ). Combining these together, the overall
runtime of FTPL is O(nT ) as well.
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Comparison to Offline Learning and ERM However, a key observation is that in many cases
computing it = argmini

∑t
τ=0 c

t−1
i , i ∈ [n] can be a lot faster, and may not require enumerating

every expert and its performance. After all, this is precisely the type of computation ERM per-
forms. For example, algorithms for linear optimization or algorithms for finding the shortest paths
in a graph, search for the optimal options without enumerating the infinitely or exponentially large
number of options.

As a concrete example, the online shortest path problem (think about the “driving to work”
example in previous lectures).

• Experts are paths in the graph, denotes by indicator vectors in |E| dimension: {0, 1}|E|

• Number of experts (paths): exponential in |E|

• Cost vectors: ~c ∈ [0, 1]|E| showing the cost per edge.

Let’s consider the runtime of FTPL on this problem. For the generation of ~c 0, the runtime is |E|.
For solving the optimization problem at step t, we spend O(T ) time to aggregate the cost function
~C t =

∑t−1
τ=0 ~c

τ (or O(1) if we do not recompute the past). Then we just need to find the shortest
path with respect to costs in ~C t. Recall that Dijkstra’s algorithm is known to find the shortest
path in O(|E|+ |V | log |V |) time. Finally the total runtime of FTPL runtime is much smaller than
O(Tn) = O(T exp(|E|)) that was claim above.

From this example we see that for problems where the number of experts is exponential in the
natural representation of the problem the runtime O(nT ) can be prohibitively large. This includes
many combinatorial optimization problems, games, and hypothesis classes. While it may not be
clear how we can use RWM to take use of ERM, FTPL may be compatible with such use case.
In the remainder of this lecture, we formally introduce the learning paradigm that allows online
optimization algorithms such as FTPL to rely on offline optimization algorithms such as ERM.

2 Oracle-Efficient Online learning

2.1 Offline optimization oracle
In the language of this lecture, an offline optimization oracle is another way of calling empirical
risk minimization (ERM). That is, OPT for a domain (expert class) X and set of cost functions C,
takes as input a set of cost functions cτ ∈ C for τ ∈ [t] and returns

OPTX ,C
(
{cτ}tτ=0

)
= argmin

i∈X

t∑
τ=0

ct(i).

When X and C are clear from the context, we suppress them in the above notation. Given the
offline optimization oracle, we can call it to compute on any historical set of cost for the best
expert. We seek to design oracle-efficient learners, that is, learners that run in polynomical time,
with each oracle call counting O(1) (Dudik et al. [2017]).
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2.2 Oracle-Efficient Offline Learning
Theorem 2.1. Offline optimization oracle is sufficient for efficient offline learning.

This theorem basically says that, if the cost functions ct(·) ∼ D, i.i.d over time, then playing
ERM

it = OPT
(
{cτ}t−1τ=0

)
gets err ≤ O(

√
T log(n)) and runs in time T .

We pretty much proved this theorem before when we showed how one can learn in agnostic
PAC setting using oracle. Recall that in PAC learning we have

m = ε−2
(
log(|H|) + log(

1

δ
)

)
Accordingly, we can see m as T , ε as average regret over T times, and |H| as n. Then we get the
same error bound.

2.3 Oracle-Efficient Online Learning
The theory above involves no adversary, i.e., the costs ct(·) ∼ D are fully stochastic while the
optimal it is deterministic. But for online learning, ct(·) is picked adversarially, not randomly.
Now a question arises: is offline optimization oracle sufficient for efficient online learning?

Theorem 2.2 ([Hazan and Koren, 2016]). No algorithm, even with access to an offline optimization
oracle, can guarantee a regret O(T/2) using Õ(

√
n) runtime.

This theorem basically says, for general functions, online learning is strictly harder than offline
learning. It is disappointing for us that for general functions we cannot hope for a decent regret
bound in log(n) time. The good news is that, for many function classes that we typically use, there
are oracle-efficient online algorithms. Before we specify what "typically" means, let’s introduce
the following structure:

For ease of representation, let ct(xt) = u(xt, yt), where u is a predefined function known to the
algorithm. In this game, xt is our action and yt is the action that the adversary takes. E.g., when
the costs are linear we have ct(xt) we define the loss as u(xt, yt) = xt · yt and use yt is the vector
corresponding the linear ct(·).

The following theorem shows one can run polynomial in the number of actions of the adversary,
instead of polynomial in terms of the actions of the learners (i.e., the number of experts).

Theorem 2.3. For any loss function u : X × Y , there is an oracle-efficient algorithm that runs
in poly(K,T ) and gets regret bound of O

(
K
√
T
)

, where K = |Y| is the number of the actions
available to the adversary.

How can we remove the runtime dependence on the number of experts, i.e., |X |? Let the
following matrix be the game matrix encoding utilities u(xi, yj).
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ERM applies the oracle at each timestep t to everything we have observed from τ = 1 to t− 1
(the history):

play xt ← OPT
(
{yτ}t−1τ=1

)
This is the ERM algorithm that has no dependence on the number of rows or columns, but it is not
as we know it is not no-regret as it is a deterministic algorithm.

We want to introduced some randomness (in the style of FTPL) while still trying to pick the
expert that was performing well historically? One way we could do this is altering the history
of the play, by adding to the history some fake “hallucinated history”. The particular form of
“hallucinated history” that works well includes taking αi copies of adversarial action yi ∈ Y and
adding it to the existing history, where αi ∼ D are appropriately defined random variables.

Play xt ← OPT

(
{yτ}t−1τ=1 ∪

K⋃
i=1

αiyi

)
, ∀i ∈ [K], αi ∼ D

This algorithm tuns in time poly(K,T ) as we need to add each of the K adversarial actions to
the history and is indeed the algorithm that gets the guarantees of Theorem 2.3 (when used with a
specific D). Unfortunately, in many cases the set of adversarial actions is also very large or even
infinitely large, which makes the runtime and regret of Theorem 2.3 less than desirable. We show
how direct dependence on K in unnecessary when the problem has some additional structure.

Definition 2.4. An online optimization problem with utility function u : X × Y is to have a d-
structure if there are d actions of the adversary y(1), . . . , y(d) ∈ Y , such that for any two different
actions of the learners x, x′ ∈ X , there is j ∈ [d] such that, u(x, y(j)) 6= u(x′, y(j)).

We can understand the definition by the figure below using the game matrix. Existence of a
d-structure means that there are d columns such that any two rows x and x′ are distinct when we
only consider the submatrix induces by columns in the d-structure.
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Theorem 2.5. If the problem has a d-structure and the utilities are 0-1, then you can have a no-
regret algorithm with regret d

√
T and oracle-efficient runtime of poly(d, T ).1

This theorem is identical to Theorem 2.3 except for that we replaceK with d. Let’s demonstrate
with an example a case where Theorem 2.3 would lead to an exponential runtime, but Theorem 2.4
gives a polynomial runtime. Recall from the online shortest path setting that

• rows: experts ∈ {0, 1}|E|

• columns: each column is one way of putting cost on all edges. If the cost is {0, 1} discrete
cost, there are 2|E| columns.

• cost: assume linear cost.

In this problem, d = |E|. That is let y(j) refer to the cost function that assigns a cost of 1 to
edge j ∈ E and cost 0 to all other edges. Then for any two different paths x and x′ there is an edge
j that appears in one of them only. In that case u(x, y(j)) 6= u(x′, y(j)). So, the set of {y(j)}j∈E
forms a d-structure.

2.4 Warming up for next time
Next time we will analyze Generalized FTPL for oracle efficient learning when the problem has a
d-structure. The algorithm takes the d-structure {y(1), · · · , y(d)}. For each of the adversarial actions
y(j) in the d-structure, it draws a random number αj , which is going to be the number of the copies
of that action that will be added to the hallucinated history. This is a generalization of FTPL when

1The assumption of 0-1 utilities is added for simplicity in thees lectures. Refer to [Dudik et al., 2017] to an
unrestricted version of this theorem.
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perturbations look like changes to the actual history, instead of i.i.d random perturbation across the
experts.

Algorithm 1 Generalized FTPL (Dudik et al. [2017])

1: Draw αj ∼ Unif [0,
√
T ] independently for j = 1, 2, 3, ...d.

2: for i = 1, ..., T do
3: Play

xt = OPT

{yτ}t−1τ=1 ∪
⋃
j∈[d]

αjy(j)


4: Observe yt and receive payoff u(xt, yt).
5: end for
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