
CS6781 - Theoretical Foundations of Machine Learning

Lecture 20: Boosting, Online Learning, and Games
April 21, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Michela Meister

1 Learning and Games
Two friends, Alice and Bob, are playing Rock, Paper, Scissors. Recall that rock beats scissors,
scissors beats paper, and paper beats rock. The following matrices describe the loss of Alice and
Bob when Alice is the row player and Bob is the column player. For example, when Alice chooses
paper and Bob chooses rock, Alice wins and Bob loses, so Alice has a loss of -1 and Bob has a
loss of 1. If Alice and Bob both choose paper, they tie and each have a loss of 0.

Table 1: Alice’s Loss

Rock Paper Scissors
Rock 0 1 -1
Paper -1 0 1

Scissors 1 -1 0

Table 2: Bob’s Loss

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

These loss matrices show that Rock, Paper, Scissors is a zero-sum game, that is, the sum of
Alice’s loss and Bob’s loss is always 0. This means that minimizing Alice’s loss is equivalent to
maximizing Bob’s loss, and vice versa. The same can be said if their losses always added to any
other fixed constant c.

Let L be the loss matrix for the row player. Then if the row player chooses row r and the
column player chooses row c, the row player receives loss L(r, c) and the column player receives
loss −L(r, c). More generally, say the row player chooses a distribution P over rows and the
column player chooses a distribution Q over columns. Then the expected loss for the row player is
P>LQ and the expected loss for the column player is −P>LQ.

1



There are a few different settings for two player games. In deterministic game play, the row
player chooses a row r, the column player sees r, and then the column player chooses a column c.
In simultaneous game play the row player picks a distribution P over rows and the column player
picks a distribution Q over columns. Then the row player samples r ∼ P and the column player
samples c ∼ Q. In randomized sequential game play the row player announces their distribution
P over rows, the column player sees P , and then the column player picks a distribution Q over
columns. Then the row player samples r ∼ P and the column player samples c ∼ Q.

In deterministic game play, the second player (say the column player) always has the advantage,
because they know the first players (say row player’s) action before choosing their own. What is
the relationship between simultaneous game play and randomized sequential game play? Does the
second player still have a strict advantage in these settings? The Min-Max Theorem says that these
two settings are equivalent – the player that goes second does not have a strict advantage.

Theorem 1.1 (Min-Max Theorem for Zero Sum Games). Let L ∈ Rm×n be the loss matrix for a
finite, zero-sum game. Let P be the set of all distributions over m elements and let Q be the set of
all distributions over n elements. Then

min
P∈P

max
Q∈Q

L(P,Q) = max
Q∈Q

min
P∈P

L(P,Q).

Proof. The left hand side of the equation is the loss incurred by the row player when the row player
goes first, and the right hand side is the loss incurred by the row player when the row player goes
second. Taking the maximum of a minimum is always smaller than minimizing a maximum, so

min
P

max
Q

L(P,Q) ≥ max
Q

min
P
L(P,Q).

(Another way to understand the above inequality is that going second should only help the row
player minimze their loss.) Thus it is sufficient to show that

min
P

max
Q

L(P,Q) ≤ max
Q

min
P
L(P,Q).

We will prove this via online learning, by analyzing the performance of a no-regret algorithm
for the row player against a best-response adversary who takes the role of the column player.
The row player and column player play a game at each time step. At time t, given the history
of distributions Q1, . . . , Qt−1 that the column player has played so far, the row player runs a no-
regret algorithm to choose Pt. Then the column player chooses Qt = arg maxQ L(Pt, Q). Let
P̄ = (1/T )

∑T
t=1 Pt and let Q̄ = (1/T )

∑T
t=1Qt. Then we have

min
P

max
Q

L(P,Q) = min
P

max
Q

P>LQ (1)

≤ max
Q

P̄>LQ (2)

= max
Q

1

T
·

T∑
t=1

P>t LQ (3)

2



≤ 1

T
·

T∑
t=1

max
Q

P>t LQ (4)

=
1

T
·

T∑
t=1

P>t LQt (5)

≤ min
P

1

T
·

T∑
t=1

P>LQt +
Regret
T

(6)

= min
P
P>LQ̄+

Regret
T

(7)

≤ max
Q

min
P
P>LQ+

Regret
T

(8)

= max
Q

min
P
L(P,Q) +

Regret
T

. (9)

In (1) we re-write the expected loss as a matrix-vector multiplication. The loss with the mini-
mizing P is at most the loss with the average (P̄ ), which implies (2). In (3) we plug in the defintion
for P̄ . The loss when Q is maximized over all time steps is at most the loss when Q is maximized
at each timestep, giving (4). In (5) we plug in the definition of Qt. In (6) the total loss accumulated
by time T ,

∑T
t=1 P

>
t LQt, is bounded by the sum of the loss due to the best fixed choice of P , which

is minP

∑T
t=1 P

>LQt, plus the regret of the row player’s algorithm. We plug in the defintion of Q̄
in (7). In (8) the loss due to the average Q̄ at most the loss due to the maximizing choice of Q. In
(9) we substitute L(P,Q) = P>LQ.

Since the row player is playing a no-regret algorithm, as T → ∞, Regret
T
→ 0, in which case

minP maxQ L(P,Q) ≤ maxQ minP L(P,Q).

2 Boosting and Minmax Theorem
As we saw in Section 1, online learning provides a constructive proof to the Min-Max theorem.
In this section, we dig deeper at the connection between minmax theorem and other learning
paradigms and see how the Min-Max Theorem helps explain why boosting is even plausible.
Let S = {(x1, y1), . . . , (xn, yn)} be a set of n labeled data points and let H be a set of m hy-
potheses produced by a weak learner trained on different distributions over S. Consider the loss
matrix M where the rows are hypotheses h1, . . . , hm and the columns are datapoints x1, . . . , xn,
and M(hj, xi) = 1 if hj(xi) 6= yi. That is, the row player has a loss of 1 for each mislabeled point.
The row player and column player play the following game: The row player chooses a distribution
P over hypotheses and the column player chooses a distributionQ over datapoints. The row player
wants to minimize the loss P>MQ, while the column player wants to maximize P>MQ.

Let (P ∗, Q∗) be the Min-Max pair of strategies and let

v1 := max
i∈[n]

m∑
j=1

P ∗(j)M(hj, xi).

3



That is, given a set of hypotheses distributed as P ∗, the weighted error of these hypotheses on any
datapoint xi is at most v1. Furthermore, let v2 be such that

v2 := min
j∈[m]

n∑
i=1

Q∗(i)M(hj, xi) = min
hj

errQ∗(hj)

This means that, given data points weighted by Q∗, the error on Q∗ of the best hypothesis is v2. By
the Min-Max theorem v1 = v2. Since h1, . . . , hm are returned by a weak learner on distributions
over S, there is a hj such that err(hj) ≤ 1/2 − γ. This implies that v2 ≤ 1/2 − γ, and therefore
v1 ≤ 1/2 − γ. So for any data point xi, given a set of hypotheses distributed as P ∗, the majority
vote of the hypotheses is correct, which shows that in principle boosting a weak learner to a strong
learner is possible.

3 Boosting and No-Regret Algorithms
Indeed, we can formulate boosting and AdaBoost’s gaurantees as no-regret interactions between a
learner and an adversary. Consider another loss matrixM ′ where the rows are datapoints x1, . . . , xn
and the columns are hypotheses h1, . . . , hm, and M ′(xi, hj) = 1 if hj(xi) = yi. That is, we have
swapped the rows and columns of the matrix in Section 2 and changed the sign of losses, so that
our matrix demonstrates row player’s losses. Consider an setting where the row player and column
player play a sequence of games where at time t the row player uses a no-regret algorithm to pick
a distribution Pt that received a low accuracy predictions from historical hypothesis the column
player has playes. The column player picks a hypothesis ht that has accuracy at least 1/2 + γ.
Then we have

1

2
+ γ ≤M ′(Pt, ht) (Accuracy of ht on Pt)

So,

1

2
+ γ ≤ 1

T
·

T∑
t=1

M ′(Pt, ht) (Average accuracy)

≤ min
xi

1

T
·

T∑
t=1

M ′(xi, ht) +
Regret
T

.

So for all xi, we have that

1

T
·

T∑
t=1

M ′(xi, ht) ≥
1

2
+ γ − Regret

T
.

Note that when Regret
T

< γ, (1/T )
∑T

t=1M
′(x, ht) > 1/2, so the majority vote for everyxi is correct.

So we need to set

4



Regret
T

=

√
T ln(m)

T
≤ γ

2
.

So we get T = Θ ((1/γ2) ln(m)), which matches the Adaboost guarantee.

5


