
CS6781 - Theoretical Foundations of Machine Learning

Lecture 19: Adaptive Boosting
April 16, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Oliver Richardson and Cole Miles

1 Empirical Error of AdaBoost

In this section, we prove that the empirical error of AdaBoost converges to 0 quickly as T → ∞. Recall from last
lecture that we are aiming to prove the following results.
Theorem 1.1. Let hfinal be the output of AdaBoost. Then errS(hfinal) ≤ exp

(
−2
∑T
t=1 γ

2
t

)
.

Under the assumption that for all t, γt ≥ γ, setting T = O
(

1
γ2 ln

(
1
ε

))
implies that AdaBoost generates a hypothesis

hfinal that achieves error at most ε. That is, errS(hfinal) ≤ ε.

Let us recall the proof outline we discussed on April 14th.

1. If hfinal is wrong on xi, i.e., the weighted majority of classifiers gave the wrong answer, which means xi’s weight
was increased many times. We will show in Lemma 1.2 that this is at least 1

m

∏T
t=1

1
Zt

.

2. This means that the number of points where hfinal is wrong is sat mostm
∏T
t=1 Zt that implies that errS(hfinal) ≤∏T

t=1 Zt

3. This quantity,
∏T
t=1 Zt goes to zero quickly.

We now formally go through the steps of this proof to show that AdaBoost converges to zero sample error.
Lemma 1.2. The distribution at the end of our algorithm, PT+1 can be written as

PT+1(xi) =
exp

(
−yih̄final

)
m
∏
Zt

where h̄final =
∑
t αtht(xi) is the weighted sum before its sign is taken; hfinal = sign(h̄final)

Proof. Recall the update rule, given by:

PT+1(xi) = PT (xi) ·
1

ZT
· exp(−yi · αT · hT (xi))

we can keep unrolling this:

= PT−1(xi) ·
1

ZT−1
· exp(−yi · αT−1 · hT−1(xi)) ·

1

ZT
· exp(−yi · αT · hT (xi))

= P1(xi)

T∏
t=1

1

Zt
exp(−yiαtht(xi))

Because the initial distribution P1 is uniform, P1(xi) = 1
m , so bringing out the normalization factors and

=
exp (−yi

∑
t αtht(xi))

m
∏
Zt

=
exp

(
−yih̄final

)
m
∏
Zt

1

This says that we can describe the probability assigned to each point by the magnitude of the prediction on that point.
How do we connect the magnitude to the sign of the prediction, which determines the error? This is given by a simple
fact.
Fact 1.3. 1(yi 6= hfinal(xi)) ≤ exp(−yi · h̄final(xi)))

Proof. 1(yi 6= hfinal(xi)) = 1(yi 6= sign(h̄final(xi))) = 1(yih̄final(xi) ≤ 0) ≤ exp(−yih̄final(xi))

since multiplying by the magnitude will not change the sign, and using the fact 1(x ≤ 0) ≤ exp(−x).

Using this, we can prove:
Lemma 1.4. errS(hfinal) ≤

∏T
t=1 Zt.

Proof.

errS(hfinal) =
1

m

∑
1(yi 6= hfinal(xi))

≤ 1

m

∑
i

exp(−yih̄final(xi)) by Fact 1.3

=
∑
i=1

mPT+1(xi)

T∏
t=1

Zt by Lemma 1.2

=

T∏
t=1

Zt. by definition of PT+1 being a distribution

This shows that the sample error is bounded by the product of our normalization factors over all iterations. The
next step is to show that this product goes to 0 quickly as T gets large; in particular, we will show that

∏
t Zt ≤

exp(−2
∑
t γ

2
t). Recall that γt is the amount we do better than random predictions (εt = 1

2 − γt), and so even if γt is
small, summing all T of them will get large. We now show this bound.
Lemma 1.5.

∏T
t=1 Zt ≤ exp(−2

∑
t γ

2
t)

2

Proof.

T∏
t=1

Zt =

T∏
t=1

Corollary 3.4 from April 14 lecture︷ ︸︸ ︷
2
√
εt(1− εt)

=

T∏
t=1

√
(1− 2γt)(1 + 2γt)

=

T∏
t=1

√
1− 4γ2t

≤
T∏
t=1

√
exp(−4γ2t) since 1− x ≤ exp(x)

= exp

(
−2
∑
t

γ2t

)
.

Putting this all together, we find that after T timesteps, AdaBoost achieves sample error errS(hfinal) ≤ exp(−2
∑
t γ

2
t).

If we want to bound this to be less than ε, we require

exp(−2Tγ2) ≤ ε =⇒ T = O

(
1

γ2
ln

(
1

ε

))
. (1)

2 Generalization Error of AdaBoost

We have shown that we can get arbitrarily small sample error if we run AdaBoost for long enough. However, at the
end of the day, what we really care about is the true distribution error. To show that we don’t overfit, we’d like to
obtain a similar bound on the true error: errD(hfinal) ≤ ε.

One technique we have previously used to bound true distribution errors is to find the VC dimension of the hypothesis
class, which is a measure of how “complex” a hypothesis class can be. We would like to relate how “complex” these
boosted classifiers are in terms of the base classifiers used to construct them.

For simplicity, we will assume that the boosting is not adaptive. That is, we will use a fixed αt = α > 0, which will
reduce the boosting process to just a majority vote (f = sign(α

∑
t ht) = sign(

∑
t ht)). This is not exactly what

happens with AdaBoost, but it will make the ideas more clear.

DefineH to be the class of hypotheses of our base learners, andHk to be the hypothesis class of all boosted classifiers
obtained by using k hypotheses fromHk:

Hk :=

{
f = sign

(
k∑
t=1

ht

)
, ∀t ∈ [k], ht ∈ H

}

To bound the complexity ofHk, we would like to relate VCDim(Hk) to VCDim(H).

Recall that the growth function ΠH(m) is defined to be the number of possible labelings of m points that functions in
H can produce, and that the VC dimension is defined as the maximum m at which ΠH(m) = 2m.

We can think of hypotheses inHk as being obtained by combining (through majority vote) k hypotheses inH. Since we
know there are only ΠH(m) hypotheses inH that produce distinct labelings, we really can reduce this to only thinking
about combining these ΠH(m) hypotheses. In the worst case, each combination will produce a new, unseen labeling

3

of the data. Since a combination is formed by picking k hypotheses, and we can pick the same hypothesis multiple
times, we can see that in the worst case we will be able to produce (ΠH(m))k) labelings with these combinations.

Hence, letting d = VCDim(H):

ΠHk(m) ≤ (ΠH(m))k

≤

(
d∑
i=0

(
m
i

))k
Sauer’s Lemma

≤
(em
d

)kd
Fact proved in 1/30 lecture

Let dk = VCDim(Hk). We know then thatHk can shatter a set of size 2dk , so we have

2dk ≤
(
edk
d

)kd
dk ≤ kd log2

(
edk
d

)
→ dk < 2kd log(ke)

where the last line uses the fact from HW#2 that for x > 1, a, b > 2 we have that x ≤ a log2(bx) =⇒ x <
2a log2(ab).

Note that T plays the role of k here, since after every timestep we add a new base classifier to our boosted classifier.
From our previously proven VCDim bounds on AdaBoost, we then have that if errS(hfinal) ≤ ε, that (up to some
logarithmic terms)

errD(hfinal) ≤ errS(hfinal) +O

(√
VCDim(HT)

m

)

≤ ε+ Õ

(√
T · VCDim(H)

m

)

Previously, to get the sample error below some threshold ε, we used Eq. 1 to choose T . Using that choice here gives
us

errD(hfinal) ≤ ε+ Õ

√ 1
γ2 ln(1/ε) · VCDim(H)

m


As long as our number of samples is large enough, m ≥ ln(1/ε)

γ2ε2 , we get that the generalization error is O(ε), which is
exactly what we were after.

However, what if we don’t early stop T ? This bound tells us that the generalization error could get arbitrarily large for
as T → ∞. Does this mean that we heavily overfit if we run AdaBoost for long times? It turns out that in practice,
that this is not the case, and that AdaBoost only improves with time.

4

3 Intuition for why Adaboost does not overfit.

The result of our work in the above theorem is to bound errS(hfinal), which is a sum of terms of the form 1(yi 6=
hfinal(xi)). However, because our analysis provides guarantees for h̄final =

∑
αtht(xi) we have shown something

stronger.

For some intuition, if the α’s are scaled so that they lie in a unit interval, then gfinal =
∑
t αtht/

∑
t αt is a convex

combination of predictions, and hence after multiplication by a label y is just some number in [-1, 1], which encodes
both whether we were correct, and its confidence.

+1-1
0

θ

Any point (xi, yi) such that yi ·gfinal(xi) lands in the red region is judged to be incorrect; our analysis so far has shown
that the number of samples falling in this region goes to zero quickly, but with a small change, we can extend the right
endpoint of the bound (shown above in orange) to a small positive threshold θ, and show that the number of samples
in [−1, θ] goes to zero quickly as well.

So, it is not just that {# of points yigfinal(xi) ≤ 0} goes to 0 as T increases; so does {# of points yigfinal(xi) ≤ θ}.
In the case that there are no such points, then for every point xi, yigfinal(xi) ≥ θ — making the prediction not only
correct, but also with certainty at least θ.

We can think of gfinal as a distribution over predictions of the T functions {ht}Tt=1. Using this intuition, we can pretend
to take draws from gfinal(xi), the ith of which we will call hi. Even if there are infinitely many hypotheses in the
“support” of gfinal, viewed as a distribution, we could have chosen just a few, and then use a Hoeffding bound to show
that a sampled hypothesis is unlikely to be wrong, as such an event would be far away from the mean outcome, which
must be a hypothesis which is correct with certainty at least θ. More precisely, taking

N = Θ

(
1

θ2
ln

1

δ

)
draws, and realizing the mean is at least theta, for any (xi, yi)

Ehj∼gfinal [yihj(xi)] = yigfinal(x) ≥ θ =⇒ Pr
h1,...,hN

[1

N

N∑
k=1

yihk(xi) < 0
]
< exp

(
−θ

2N

2

)
≤ δ.

In effect, a small amount of certainty allows us to approximate gfinal which potentially is made up off infinitely many
base classifiers using a classifier ḡfinal which only has N classifiers in it. Since the latter has a small VC dimension,
the former cannot overfit either.

5

