
CS6781 - Theoretical Foundations of Machine Learning

Lecture 17: Intro to Boosting
April 14th, 2020

Lecturer: Nika Haghtalab Readings: None
Scribe: Rishi Bommasani and William Gao

1 Strong and Weak Learners
The main focus of our learning algorithms in the PAC model have been to achieve arbitrarily small
generalization error, errD(h). In today’s lecture, we consider relaxing this strong requirement and
instead learning a hypothesis that performs slightly better than random guessing. We explore
whether there is an inherent difference between having algorithms that always guarantee arbitrarily
small generalization error and those who are only capable of guaranteeing much larger error rates.

Let us recall learnability in the PAC model, hereafter called strong learnability.

Definition 1.1 (Strong Learnability). A hypothesis class C is strongly learnable, if there is an algo-
rithm that for any realizable distributionD, any ε > 0, and any δ > 0, uses poly(1

ε
, 1
δ
,VCDim(H))

samples from D and returns a classifier h such that

Pr
(
errD(h) ≤ ε

)
≥ 1− δ. (1)

The algorithm performing this learning task is call a strong learner.

Definition 1.2 (Weak Learnability). A hypothesis class C is γ-weakly learnable for some γ > 0, if
there is an algorithm that for any realizable distributionD and any δ > 0, uses poly(1

δ
,VCDim(H))

samples from D and returns a classifier h such that

Pr
(
errD(h) ≤

1

2
− γ
)
≥ 1− δ. (2)

The algorithm performing this learning task is call a γ-weak learner.

Note that if a learner ignores the samples and guesses +1,−1 uniformly at random, it has an
error of exactly 1/2. A weak learner is one that can essentially beats this random prediction by a
small γ > 0.

A natural question to ask is whether strong learnability and weak learnability are inherently
different. That is, are there classes that are weakly learnable but not strongly? Freund [1995]
and Schapire [1990] showed that weak learnability is equivalent to strong learnability, i.e., there
is a boosting algorithm that uses a weak learner on an adaptively designed short sequence of
distributions and gives a strong learner.

Theorem 1.3. A concept class C is weakly PAC-learnable iff it is strongly PAC-learnable.

To see how applying a weak learner to an adaptively designed short sequence of distributions
can result in a strong learner, we start with a warm up that applies to a specific class of weak-
learners. We then see how the same ideas can be generalized to work for any weak learner.

1



2 Warm up
In this section, we see how a special class of weak learners can be boosted to strong learners. These
weak learners are special, because in addition to predicting +1 or−1, they can also tell us that they
they don’t know the answer. To make sure that these learners do “learn”, there must be a small
fraction of the data where they can make better than random predictions.

Formally consider a classifier g(x) ∈ {+1,−1, not sure}. For any D some ε < 1/2 and some
ε′′ > 0, we say that g(·) can (1− ε′, ε)-learn if

1. On at most 1− ε′ fraction of data, g says not sure.

2. Conditioned on making a prediction, g has error of at most ε.

Let us first show that g(·) that (1 − ε′, ε)-learns is a special type of weak learner. Let h(x) ∈
{−1,+1} be a classifier such that on input x randomly outputs +1 or −1 with equal probability if
g(x) = not sure. Otherwise, h(x) = g(x) which is either +1 or −1. Note that

errD(h) ≤
1

2
(1− ε′) + ε′ε ≤ 1

2
− γ,

when γ = ε′(0.5− ε) > 0. So h is a weak learner.
What we will first show is that if we have a (1 − ε′, ε)-weak learner of the above type, we can

yield a strong learner with error ε = 2ε. In particular, we can construct weak learners g1, . . . , gT
as given in Algorithm 1.

Algorithm 1: Decision List Boosting Algorithm

1 Initialize P1 ← U
(
S , {(x1, y1), . . . , (xm, ym)}

)
2 for t← 1, . . . , T do
3 gt is a (1− ε′, ε)-weak learner on Pt
4 Pt+1 ← Pt | {x : gt(x) = not sure}
5 end

We can then define our strong learner by outputting the decision of g1 if g1 makes a prediction and
backing off to g2 if it doesn’t and repeating this iteratively as needed. If all of g1, . . . , gT indicate
that they are not sure, we can then make a random prediction. Setting T = 1

ε′
ln( 1

2ε
) ensures the

error associated with random guesses is at most 1
2
(1 − ε′)T ≤ ε. On the other hand, conditioned

on any of the weak learners making a prediction, the error (by the definition of the weak learner)
associated with that is at most ε. The resulting strong learner therefore achieves error ε = 2ε.

3 A General Boosting Algorithm
In the previous section, we made explicit use of the fact that the weak learners considered are able
to identify when they are uncertain. For traditional learners whose hypotheses have the simple label

2



space of {−1, 1}, there is no immediate analogue. This results in two issues with the approach
given in section 2 and we introduce the workarounds that we will consider in this lecture.

1. Training.
Issue: We cannot train ht+1 on the distribution Dt+1 ← Dt | {ht(x) = not sure}.
Workaround: Train ht+1 on Dt+1 which is Dt with the examples that ht gets wrong up-
weighted.

2. Prediction.
Issue: We cannot apply ht+1 conditional on h1, . . . , ht being not sure.
Workaround: Take the weighted majority vote of h1, . . . , hT with weights related to the
quality of each of the hi.

These workarounds give rise to the template given in Algorithm 2.

Algorithm 2: Template for Boosting Algorithms for traditional weak learners

1 Initialize P1 ← U
(
S , {(x1, y1), . . . , (xm, ym)}

)
2 for t← 1, . . . , T do
3 ht is the hypothesis generated by a γt-weak learner on Pt
4 Pt+1 is defined in terms of Pt with higher weights on {xi : ht(xi) 6= yi}
5 end
6 Return: hfinal(x) = sign

(∑T
i=1 αihi(x)

)

3.1 AdaBoost
We next introduce the celebrated AdaBoost algorithm [Freund and Schapire, 1995], which is a
specific instantiation of the template we previously introduced. In particular, the weighting schema
for defining Pt+1 and the voting weights αi will be tightly connected and set adaptively.

Theorem 3.1. Let hfinal be the output of AdaBoost. Then errS(hfinal) ≤ exp
(
−2
∑T

t=1 γ
2
t

)
.

Corollary 3.2. Under the assumption that ∀t, γt ≥ γ, setting T = O
(

1
γ2

ln
(

1
ε

))
implies that

AdaBoost generates a hypothesis hf that achieves error at most ε. That is, errS(hfinal) ≤ ε.

In ADABoost, distribution Pt+1 is intuitively designed so that weak learning on distribution
Pt+1 would result in new information about how we should label each points. At the very least,
we want hypothesis ht not to be a good learner for Pt+1, i.e., the algorithm has to output a new
ht+1 6= ht in the next round. So, Pt+1 is designed so that errPt+1(ht) =

1
2
. Intuitively, this is the

hardest new distributions for the algorithm, in the way that ht is doing just as bad/good as random
guessing. Next, we formally prove that errPt+1(ht).

3



Algorithm 3: AdaBoost Algorithm [Freund and Schapire, 1995]

1 Initialize P1 ← U
(
S , {(x1, y1), . . . , (xm, ym)}

)
2 for t← 1, . . . , T do
3 ht is the hypothesis generated by the weak learner on Pt with error εt , errPt(ht)

4 αt ← 1
2
ln
(

1−εt
εt

)
5 Pt+1(xi)←

Pt(xi) exp(−αtyiht(xi))
Zt

6 where Zt is the natural normalizing factor
∑

j∈[n] Pt(xj) exp(−αtyjht(xj))
7 end
8 Return: hfinal(x) = sign

(∑T
i=1 αihi(x)

)

Lemma 3.3. ∀t ∈ [T − 1], errPt+1(ht) =
1
2

Proof. We will demonstrate this by showing that the sets {xi : ht(xi) = yi} and {xi : ht(xi) 6= yi}
have equal probability mass under Pt+1.

Pr
Pt+1

(
{xi : ht(xi) = yi}

)
=

1− εt
Zt

exp

((
−1
2

ln

(
1− εt
εt

)))
=

√
εt(1− εt)
Zt

(3)

Pr
Pt+1

(
{xi : ht(xi) 6= yi}

)
=
εt
Zt

exp

((
1

2
ln

(
1− εt
εt

)))
=

√
εt(1− εt)
Zt

(4)

as required.

Corollary 3.4. Zt = 2
√
εt(1− εt)

Proof.

Pr
Pt+1

(
{xi : ht(xi) = yi}

)
+ Pr

Pt+1

(
{xi : ht(xi) 6= yi}

)
= 1 =⇒ Zt = 2

√
εt(1− εt) (5)

At a high level, what we have to show is that if hfinal misclassifies a point x, i.e., the weighted
majority of functions h1, . . . , hT similarly misclassifies a point, then the weight of x in PT is very
large. In the next lecture we will formally show that this weight would be at least 1

m
1∏T

t=1 Zt
. This

means that the total empirical error of hfinal is at most
∏T

t=1 Zt. This is because the sum of all the
xi probabilities is 1, the sum of the probabilities for the points which hfinal misclassifies is at most
1. Consequently, there are at most m

∏T
t=1 Zt misclassified points, which further implies the error

on S is at most
∏T

t=1 Zt as desired.

4



What would remain then is to show that
∏T

t=1 Zt =
∏T

t=1 2
√
εt(1− εt) → 0. Intuitively, the

latter calculation hold because∏
t

2
√
εt(1− εt) =

∏
t

2

√
(
1

2
− γt)(

1

2
+ γt) =

∏
t

√
(1− 2γt)(1 + 2γt)

is the geometric mean of the values that are bounded away from 1. This gap between the values
and 1 ensures that the geometric mean is smaller than the arithmetic one and therefore it shrinks
quickly as t → ∞. We will see a formal proof of these arguments and Theorem 3.1 in the next
lecture.

References
Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation, 121

(2):256–285, 1995.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23–37. Springer, 1995.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

5


	Strong and Weak Learners
	Warm up
	A General Boosting Algorithm
	AdaBoost


