
CS6781 - Theoretical Foundations of Machine Learning

Lecture 16-17: Multiarmed Bandits
April 9, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Varsha Kishore, Anmol Kabra, Ziyang Wu, and Jonathan Chang

1 Full versus Partial Information
In online full information setting, we are able to observe the historical costs of choosing any of the
experts. More formally, at time t, after taking action i ∈ [n] we know ct(j) for all actions j ∈ [n].
Such an assumption makes sense in some problems such as classification where by observing
adversary’s choice of labeled instances (xt, yt) we can calculate the cost of each classifier h ∈ H
by taking ct(h) = I(h(xt) 6= yt). On the other hand, many examples involve situations where we
only observe the cost function for some of the experts, e.g., only the expert that we followed at that
time step. Examples of this include online route optimization where we may only observe the total
travel time for the route we took, or observe the traffic on different parts of this route.

This is referred to as partial information in online learning. Formally, when playing action it,
we may observe costs of experts ct(j) for j ∈ Ei. When Ei = [n], this is just the full information
setting. When Eit = {it}, the online learning problem is commonly referred to Adversarial Multi-
Armed Bandits. In more detail, in the adversarial multi-armed bandit setting, we have n experts
and at each time step we choose one of the n experts and we only observe the cost of that expert.

In the following sections we will see an algorithm for the bandit setting and we will derive
regret bounds for the algorithm. Since, we don’t get to observe the cost of experts we didn’t play
in the bandit setting, we can never rule out picking an expert completely and we need to have
some probability of picking every expert at any given point. This is referred to as exploration and
allows us to uncover potentially great experts that we have not played in the past. On the other
hand, similar to the full information setting, we also want to take experts whose past performances
have been good with higher probability. This is referred to as exploitation. Therefore any bandit
algorithm needs to balance exploration and exploitation of experts.

2 An Easy Algorithm for Adversarial Multi-Armed Bandits
In this section, we show that any no-regret algorithm from the full information setting can be
altered to work for the bandit setting as well, albeit with slightly worse regret guarantees. For
ease of presentation, in the following we make use of the Randomized Weighted Majority (RWM)
Algorithm that is no-regret in the full information setting (See Section 2.4 of Lecture 11). The high
level idea for this algorithm is as follows:
At iteration t,

1

https://www.cs.cornell.edu/courses/cs6781/2020sp/lectures/11_online1.pdf

Learner vs
Adversary ⃗q t

u t
it

⃗p t

̂u t

it ∼ ⃗q t

Algorithm for
Bandit
Setting

Random
Weighted
Majority

 (n experts)

Figure 1: High level idea for algorithm in bandit setting

• Use probabilities suggested by a no-regret algorithm in a full information setting (such as
RWM). Let us denote these probabilities by vector ~p t.

Sample an expert it from a distribution ~q t, where ~q t = (1 − γ)~p t + γ(1
n
, · · · , 1

n
). This is

equivalent to taking it ∼ ~p t, (1 − γ) fraction of the time, and taking it ∼ [n] uniformly the
rest of the time.

• Let the full-information algorithm update the weights of the experts. To do this, the algorithm
needs to see the utilities (that is either the loss or reward) of every expert. For this we create
a hypothetical utility vector as follows:

ût =

(
0, · · · , 0,

utit

qtit
, 0, · · · , 0

)
.

Here utit is the utility of the one expert it that is chosen at time t and qtit is the probability
of choosing expert it. The vector ût is then fed in to the full-information algorithm (such as
RWM) to update the weights of the experts accordingly.

This high level idea is summarized in Figure 1. A few remarks:

1. At a high level, for the update rule to work well for the full information algorithm, we
would want ût to represent the full vector of utilities ~ut in expectation. That is, Eit∼qt [û

t] =
(ut1, · · · , utn). We prove this later in this section.

2. The version of RWM that we described in Lecture 11 assumes that the utilities are in range
[0, 1]. On the other hand, we are creating an expert with utility

ut
it

qt
it
∈ [0, n/γ]. Therefore, we

need to adapt the regret bound of RWM to scale with this larger range of utilities.

Algorithm 1 shows the algorithm that corresponds to using Figure 1. In this version, we consider
utilities as rewards to the algorithm instead of costs. This results in +ε used in update rue of
Algorithm 1 in line 6.

2

Algorithm 1 Reduction to Full Information

1: Initialize w1
1, . . . , w

1
n = 1

2: for time t = 1, . . . , T do
3: ∀i ∈ [n], qti ← (1− γ) wt

i∑n
j=1 w

t
j
+ γ

n

4: Pick it ∼ ~q t and receive utit ∈ [0, 1]

5: Let ût =
[
0, . . . , 0,

ut
it

qt
it
, 0, . . . , 0

]
6: ∀i ∈ [n], wt+1

i ← wti

(
1 +

εγûti
n

)
%(Approximately equal to wti exp

(
εûti
n
· γ
)

7: end for

Theorem 2.1 (Reduction to Full Information). With γ = ε, Algorithm1 guarantees that

E

[
T∑
t=1

utit

]
≥ E

[
max
j

T∑
t=1

utj

]
(1− γ)2 − n

γ2
ln(n)

It follows that REGRET ≤ T 2/3 (n ln(n))
1/3 if γ =

(
n ln(n)
T

)1/3

.

We will prove the theorem by combining the proofs of several facts

Fact 2.2. ∀j ∈ [n], ûtj is an unbiased estimator of utj .

Proof. This follows from:

E
it∼~q t

[
ûtj
]
= qtj ·

utj
qtj

+
(
1− qtj

)
· 0 = utj.

Let OPTRWM = maxj
∑T

t=1 û
t
j be the best utility in hindsight according to RWM and OPT =

maxj
∑T

t=1 u
t
j be the true best in hindsight utility. Next we show that OPTRWM is more competitive

than OPT.

Fact 2.3. Eit∼~q t [OPTRWM] ≥ OPT.

Proof. We will use Jensen’s inequality in proving this fact for asserting that expectation of a max-
imum is greater than maximum of an expectation. This is because the maximum accounts for the
random variable that is taken expectation of, when the maximum is inside of the expectation.

E
it∼~q t

[OPTRWM] = E
it∼~q t

[
max
j

T∑
t=1

ûtj

]
≥ max

j
E

it∼~q t

[
T∑
t=1

ûtj

]
= max

j

T∑
t=1

utj = OPT,

where the penultimate transition is by Fact 1.2.

Fact 2.4.
T∑
t=1

~p tût ≥ (1− ε)OPTRWM −O
(
1

ε
ln(n)

n

γ

)

3

Proof. This fact follows from Theorem 1.1 of Lecture 12 but using utilities instead of costs. Note
that the utilities used by RWM in the bandit algorithm are in [0, n/γ] instead of the usual [0, 1],
leading to a scaling factor in the last term of the expression above.

Fact 2.5. utit ≥ (1 − γ) · ptit · ûtit , i.e., The true reward is a large fraction of RWM’s expected
reward.

Proof. Let i = it for readability purposes. Then,

uti = ûtiq
t
i = pti · ûti ·

qti
pti
≥ pti · ûti(1− γ).

Here, pti · ûti is RWM’s reward and qti
pti

is a scaling factor, which is small as shown.

Proof of Theorem 2.1. Combining all facts together, the bandit algorithm’s reward is:

E
it∼~q t

[
T∑
t=1

utit

]
≥ (1− γ) E

it∼~q t

T∑
t=1

[
ptit · ûtit

]
(By Fact 1.5)

≥ (1− γ)(1− ε)E [OPTRWM]− (1− γ) 1
εγ
n ln(n) (By Fact 1.4)

≥ (1− γ)2E [OPT]− n

γ2
ln(n) (By Fact 1.3).

3 EXP3 Algorithm: A Better Bandit Algorithm
While Algorithm 1 is a no-regret algorithm, its regret bound dependence T 2/3 is far from optimal.
Below, we introduce EXP3 that enjoys better regret guarantees. Interestingly, EXP3 is essentially
equal to Algorithm 1, with the exception that its update rule does not have an additional γ depen-
dence (See line 6). This requires a much more careful analysis of EXP3 that give us the following
regret bound.

Algorithm 2 EXP3: Exponential Weights for Exploration and Exploitation

1: Initialize w1
1, . . . , w

1
n = 1

2: for time t = 1, . . . , T do
3: ∀i ∈ [n], qti ← (1− γ) wt

i∑n
j=1 w

t
j
+ γ

n

4: Pick it ∼ ~q t and receive utit ∈ [0, 1]

5: Let ût =
[
0, . . . , 0,

ut
it

qt
it
, 0, . . . , 0

]
6: ∀i ∈ [n], wt+1

i ← wti exp
(
εûti
n

)
7: end for

4

https://www.cs.cornell.edu/courses/cs6781/2020sp/lectures/12_online2.pdf

Theorem 3.1. (EXP3 Regret). When γ = ε, EXP3 algorithm guarantees

E

[
T∑
t=1

utit

]
≥ E

[
max
j

T∑
t=1

utj

]
(1− γ)− n

γ
ln(n).

It follows that REGRET (EXP3) ≤
√
Tn ln(n) if γ =

√
n ln(n)
T

.

EXP3 requires a more careful analysis (i.e. proving Theorem 3.1) than we have done for
Theorem 2.1. We will not prove EXP3’s regret bound in this lecture and instead refer the interested
reader to Auer et al. [2002].

Let us remark that the regret bound of Theorem 3.1 is nearly tight in both its dependence on T
and its dependence on n. Note that in the partial information setting our regret bounds grow with√

ln(n) while in the partial information setting they grow with
√
n. This polynomial dependence

in the partial information setting is unavoidable because we need to explore nearly all experts to
uncover potentially excellent ones that have never been played before.

References
Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-

armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation, 121
(2):256–285, 1995.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

5

	Full versus Partial Information
	An Easy Algorithm for Adversarial Multi-Armed Bandits
	EXP3 Algorithm: A Better Bandit Algorithm

